{"title":"Pharmacokinetic Analysis of Gatifloxacin and Dexamethasone in Rabbit Ocular Biofluid Using a Sensitive and Selective LC–MS/MS Method","authors":"Arpon Biswas, Abhijit Deb Choudhury, Anjali Mishra, Sarvesh Kumar Verma, Amol Chhatrapati Bisen, Sachin Nashik Sanap, Sristi Agrawal, Mukesh Kumar, Shivansh Kumar, Rabi Sankar Bhatta","doi":"10.1002/jms.5088","DOIUrl":"10.1002/jms.5088","url":null,"abstract":"<div>\u0000 \u0000 <p>Bacterial keratitis (BK) is an infection that causes inflammation of the cornea and, if severe, can result in blindness. Topical fluoroquinolones combined with corticosteroids have been shown to be useful in the treatment of BK. A rapid, selective, and sensitive bioanalytical method for simultaneous quantification of Gatifloxacin (GAT) and Dexamethasone (DEX) has been developed and validated using tandem mass spectrometry (LC–MS/MS). Optimal separation was accomplished in under 5 min using an Agilent Zorbax C18 column (100 mm × 4.6 mm, 3.5 μm). The mobile phase was composed of a blend of 0.2% formic acid in triple distilled water and methanol with a flow rate of 0.65 mL/min in isocratic mode. GAT and DEX were detected in positive electrospray ionization multiple reaction monitoring mode (MRM), and the retention time was found to be at 1.64 and 2.93 min, respectively. The linearity of GAT and DEX was found to be in the range of 1.56–400 ng mL<sup>−1</sup> with good precision and accuracy. The method was validated according to USFDA regulatory guidelines. The validated method was effectively utilized for preclinical pharmacokinetic analysis of GAT and DEX in rabbit tear fluid following the topical application of a commercial formulation.</p>\u0000 </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Where You Protonate Matters: Deciphering the Unimolecular Chemistry of Protonated Myrcene and Linalool","authors":"Edgar White Buenger, Paul M. Mayer","doi":"10.1002/jms.5096","DOIUrl":"10.1002/jms.5096","url":null,"abstract":"<p>The unimolecular reactions of protonated myrcene and linalool were investigated by collision-induced dissociation and density functional theory calculations. Experiments on a triple quadrupole mass spectrometer showed that protonated myrcene undergoes two major unimolecular reactions losing propene and isobutene, and two minor reactions of ethene and propane loss. In each case, the product ion consists of a substituted five-member ring. Protonation of myrcene was found to form four distinct protomers, three of which can be significantly populated in the ion source. The observed fragmentation reactions were calculated and found to depend on the starting protomer. Each pathway consisted of several hydrogen-migration and ring-forming/opening steps on the way to the observed products. Likewise, protonation of linalool also produces three distinct protomers, with the global minimum being formed by protonation of a central double bond. The major reaction is water loss to form protonated myrcene, but two minor channels were also observed resulting in loss of acetone and isobutene. The calculated minimum energy reaction pathways were found to be consistent with the relative abundances of the ions in the experimental breakdown diagrams.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EDTA-Assisted MPT-MS for Trace Analysis of Heavy Metals in Fireworks","authors":"Gaosheng Zhao, Yuliang Huang, Maolin Yang, Lifeng Liu, Bin Jia, Ping Cheng","doi":"10.1002/jms.5093","DOIUrl":"https://doi.org/10.1002/jms.5093","url":null,"abstract":"<div>\u0000 \u0000 <p>A novel method was developed for the rapid detection of heavy metals in firework solutions with high sensitivity and minimal pretreatment by enriching them with ethylenediaminetetraacetic acid (EDTA) reagent and analyzing them using microwave plasma torch mass spectrometry (MPT-MS). Quantitative results showed that the limits of detection and quantification for heavy metals (Pb, Ba, Sr, and Ag) ranged from 0.05 to 0.25 and 0.38 to 0.71 μg·L<sup>−1</sup>, respectively. The linear dynamic ranges covered at least two orders of magnitude, with correlation coefficients exceeding 0.99. Fireworks from five regions in China were also analyzed quantitatively, detecting heavy metals including Pb, Ba, Sr, and Ag, with recovery rates ranging from 87.9% to 107.5%. Good separation between the firework samples from different regions was achieved by using element ratios and principal component analysis (PCA). These results from the preliminary study showed that the EDTA-assisted MPT-MS combined with PCA is a powerful tool for characterizing firework samples and tracing them back to their sources, which is valuable to effectively regulate and manage banned fireworks.</p>\u0000 </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating Anion Effects on Metal Ion Binding Interactions With Amyloid β Peptide by Ion Mobility Mass Spectrometry","authors":"Jingwei Zhang, Ashley Phetsanthad, Lingjun Li","doi":"10.1002/jms.5090","DOIUrl":"https://doi.org/10.1002/jms.5090","url":null,"abstract":"<p>The study of metal ion's role in the biological processes of Alzheimer's disease has spurred investigations into the coordination chemistry of amyloid beta peptide and its fragments. Nano-electrospray ionization mass spectrometry (nESI-MS) has been utilized to examine the stabilization of bound anions on multiprotein complexes without bulk solvent. However, the effects of anions on metal ion binding interactions with amyloid beta peptide have not been explored. This study directly examined metal-peptide complexes using nESI-MS and investigated the effects of various anions on the binding ratio and stability of these complexes from ammonium salt solutions. The results indicate that different anions have distinct effects on the binding ratio and stability of various metal-peptide complexes. Of these, the bicarbonate ion exhibits the highest binding ratios for metal-peptide complexes, while binding ratios for these complexes in phosphate are comparatively low. Our results suggest that acetate, formate, bicarbonate, and phosphate have weak affinities and act as weak stabilizers of the metal-peptide complex structure in the gas phase. Intriguingly, chloride and sulfate act as stabilizers of the metal-peptide complex in the gas phase. The rank order determined from these data is substantially different from the Hofmeister salt series in solution. Although this outcome was anticipated due to the reduced influence of anions and water solvation, our findings correlate well with expected anion binding in solution and emphasize the importance of both hydration layer and anion-metal-peptide binding effects for Hofmeister-type stabilization in solution. This approach proved useful in examining the interactions between metal ions and amyloid beta peptide, which are relevant to Alzheimer's disease, using direct ESI-MS.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5090","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Expedited Qualitative Profiling of Free Amino Acids in Plant Tissues Using Liquid Chromatography-Mass Spectrometry (LC–MS) in Conjunction With MS-DIAL","authors":"Anish Kaachra, Anish Tamang, Vipin Hallan","doi":"10.1002/jms.5094","DOIUrl":"https://doi.org/10.1002/jms.5094","url":null,"abstract":"<div>\u0000 \u0000 <p>The estimation of relative levels of amino acids is crucial for understanding various biological processes in plants, including photosynthesis, stress tolerance, and the uptake and translocation of nutrients. A wide range of liquid chromatography (LC; HPLC/UHPLC)-based methods is available for measuring the quantity of amino acids in plants. Additionally, the coupling of LC with mass spectrometry (MS) significantly enhanced the robustness of existing chromatographic methods used for amino acid quantification. However, accurate annotation and integration of mass peaks can be challenging for plant biologists with limited experience in analyzing MS data, especially in studies involving large datasets with multiple treatments and/or replicates. Further, there are instances when the experiment demands an overall view of the amino acids profile rather than focusing on absolute quantification. The present protocol provides a detailed LC–MS method for obtaining a qualitative amino acids profile using MS-DIAL, a versatile and user-friendly program for processing MS data. Free amino acids were extracted from the leaves of control and Tomato leaf curl Palampur virus (ToLCPalV)-infected <i>Nicotiana benthamiana</i> plants. Extracted amino acids were derivatized and separated using UHPLC-QTOF, with each amino acid subsequently identified by aligning mass data with a custom text library created in MS-DIAL. Further, MS-DIAL was employed for internal standard-based normalization to obtain a qualitative profile of 15 amino acids in control and virus-infected plants. The outlined method aims to simplify the processing of MS data to quickly assess any modulation in amino acid levels in plants with a higher degree of confidence.</p>\u0000 </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lindsay P. Brown, Wesley B. Seaton, Joshua B. Powers, Shawn R. Campagna
{"title":"Discovery of Combustion-Like in-Source Oxidation of Linear Saturated Hydrocarbons Using GC-APCI-HRMS","authors":"Lindsay P. Brown, Wesley B. Seaton, Joshua B. Powers, Shawn R. Campagna","doi":"10.1002/jms.5087","DOIUrl":"https://doi.org/10.1002/jms.5087","url":null,"abstract":"<div>\u0000 \u0000 <p>Atmospheric pressure chemical ionization (APCI) is often used in the analysis of linear saturated hydrocarbons (LSHs) as this ionization technique commonly produces [M − H]<sup>+</sup> ions in high abundance. However, APCI (along with other atmospheric pressure sources) is often impacted by in-source oxidation, leading to a variety of ionic products. Identifying these products and understanding their mechanisms of formation is crucial for characterizing complex mixtures with substantial hydrocarbon content, such as those found in the petrochemical industry. In this study, in-source oxidation of LSHs was observed in gas chromatography (GC) coupled to high-resolution mass spectrometry (HRMS) via a custom-built APCI interface. Studies showed that the abundance of these oxidized ions correlated positively with atmospheric water, yet occurred without the inclusion of water-based oxygen as judged by experiments with stable isotope-labeled water. The oxidation of LSHs was further influenced by the reactive species in the ionization atmosphere. Fragmentation data using stable isotope-labeled LSH standards unveiled multiple structurally unique ions with one or more oxidation sites on both primary and secondary carbons. These ionic products bear resemblance to combustion byproducts, suggesting the instrumental configuration fosters plasma-assisted combustion-like processes that encourage the radical-mediated oxidation of LSHs rather than generate [M − H]<sup>+</sup>. Through these investigative efforts, a mechanism analogous to combustion was proposed for the formation of LSH oxidation products in GC-APCI-HRMS. Data demonstrate that these ions are robustly generated in petrochemical products, allowing for proper characterization of these complex mixtures.</p>\u0000 </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Amino Acid Composition Determination From the Fractional Mass of Peptides","authors":"Kevin M. Downard, Robert B. Cody","doi":"10.1002/jms.5089","DOIUrl":"https://doi.org/10.1002/jms.5089","url":null,"abstract":"<div>\u0000 \u0000 <p>A peptide's fractional mass is directly associated with its elemental composition and thus amino acid composition. Here it is demonstrated that a peptide's fractional mass alone can be a useful identifier or indicator of that composition for small to mid-sized peptides (5–7 amino acids) and can significantly reduce the number of viable amino acid compositions for larger peptides (> 8 residues) to include or exclude certain possibilities. Separate consideration of the integer portion of the peptide's mass helps to reduce the number of possibilities where many duplicate fractional mass values are found. Adoption of this fractional mass strategy should aid approaches that are presently employed for peptide identification, including in the use of mass map data to search protein databases for proteomics applications.</p>\u0000 </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Top Solvent-Additive-Ionization Technique Combination for Pesticides Direct Infusion MS Analysis","authors":"Darko Anđelković, Milica Branković","doi":"10.1002/jms.5092","DOIUrl":"10.1002/jms.5092","url":null,"abstract":"<div>\u0000 \u0000 <p>The leading type of ionization technique in mass spectrometry analyses is the ionization at atmospheric pressure. The aim of this study was to assess ESI and APCI ionization efficiency of pesticides introduced to the MS source in four organic phases, non-doped and doped with formic acid and ammonium formate. Ionization efficiency in modified ESI and APCI, applying in-source sample heating, was also assessed. The study was primarily designed to support non-chromatography-based mass spectrometry pesticides analysis by the direct infusion technique. Evaluation of analysis performances such as calibration performances, detectability, and sensitivity should indicate a top solvent-additive-source combination, leading to the highest ionization efficiency and lowest analytes detection limits.</p>\u0000 </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily R. Bruce, Russell R. Kibbe, Emily C. Hector, David C. Muddiman
{"title":"Absolute Quantification of Glutathione Using Top-Hat Optics for IR-MALDESI Mass Spectrometry Imaging","authors":"Emily R. Bruce, Russell R. Kibbe, Emily C. Hector, David C. Muddiman","doi":"10.1002/jms.5091","DOIUrl":"https://doi.org/10.1002/jms.5091","url":null,"abstract":"<p>Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) uses an infrared laser to desorb neutral biomolecules with postionization via ESI at atmospheric pressure. The Gaussian profile of the laser with conventional optics results in the heating of adjacent nonablated tissue due to the energy profile being circular. A diffractive optical element (DOE) was incorporated into the optical train to correct for this disadvantage. The DOE produces a top-hat beam profile and square ablation spots, which have uniform energy distributions. Although beneficial to mass spectrometry imaging (MSI), it is unknown how the DOE affects the ability to perform quantitative MSI (qMSI). In this work, we evaluate the performance of the DOE optical train against our conventional optics to define the potential advantages of the top-hat beam profile. Absolute quantification of glutathione (GSH) was achieved by normalizing the analyte of interest to homoglutathione (hGSH), spotting a dilution series of stable isotope labeled glutathione (SIL-GSH), and analyzing by IR-MALDESI MSI with either the conventional optical train or with the DOE incorporated. Statistical comparison indicates that there was no significant difference between the quantification of GSH by the two optical trains as evidenced by similar calibration curves. Results support that both optical trains can be used for qMSI without a change in the ability to carry out absolute quantification but providing the benefits of the top-hat optical train (i.e., flat energy profile and square ablation spots)—for future qMSI studies.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deborah F. McGlynn, Nirina Rabe Andriamaharavo, Anthony J. Kearsley
{"title":"Improved Discrimination of Mass Spectral Isomers Using the High-Dimensional Consensus Mass Spectral Similarity Algorithm","authors":"Deborah F. McGlynn, Nirina Rabe Andriamaharavo, Anthony J. Kearsley","doi":"10.1002/jms.5084","DOIUrl":"https://doi.org/10.1002/jms.5084","url":null,"abstract":"<p>This study employs a high-dimensional consensus mass spectral (HDCMS) similarity scoring technique to discriminate isomers collected using an electron ionization mass spectrometer. The HDCMS method was previously introduced and applied to the discrimination of mass spectra of constitutional isomers, methamphetamine and phentermine, collected with direct analysis real-time mass spectrometry (DART-MS). The method formulates the problem of discriminating mass spectra in a mathematical Hilbert space and is hence called “high dimensional.” It requires replicate mass spectra to build a Gaussian model and evaluate the inner products between these functions. The resulting measurement variability is used as a signature by which to discriminate spectra. In this work, HDCMS is tested on electron impact ionization (EI) mass spectra of 7 terpene and terpene-related (C<sub>10</sub>H<sub>16</sub> and C<sub>10</sub>H<sub>14</sub>) isomers with experimental retention indices that differ by less than 30 and with traditional cosine similarity scores greater than 0.9, on a scale of 0 to 1, when compared with at least one other compound in the test set. Using identical instrument parameters, 15 replicate gas chromatography–electron ionization–mass spectrometry (GC-EI-MS) spectra of each isomer were collected and separated into distinct library and query sets. The HDCMS algorithm discriminated each isomer, indicating the method's potential. Because the method requires replicate measurements, observations from a simple heuristic study of the number of replicates required to discriminate these isomers is presented. The paper concludes with a discussion of compound discrimination using HDCMS and the benefits and drawbacks of applying the method to EI-MS data.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"59 10","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}