Development and Validation of a Rapid Liquid Chromatography–Tandem Mass Spectrometry Method for the Quantitation of Vitamin K Metabolites in Different Matrices
{"title":"Development and Validation of a Rapid Liquid Chromatography–Tandem Mass Spectrometry Method for the Quantitation of Vitamin K Metabolites in Different Matrices","authors":"Danchen Wang, Yichen Ma, Honglei Li, Xiaoli Ma, Yutong Zou, Songlin Yu, Ling Qiu","doi":"10.1002/jms.5120","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Adequate vitamin K is crucial for optimal health. Although vitamin K detection methods have been established using liquid chromatography–tandem mass spectrometry (LC–MS/MS), some limitations remain. Therefore, we aimed to establish a stable and rapid LC–MS/MS method that can quantify phylloquinone (VK1), menaquinones-4 (MK-4), and menaquinones-7 (MK-7) in serum and cerebrospinal fluid and explore its clinical applications. We developed an LC–MS/MS method with atmospheric pressure chemical ionization to quantify and validate its performance according to Clinical Laboratory and Standard Institution standards (C62-Ed2). Serums from 50 healthy individuals and cerebrospinal fluid from 15 patients were collected for clinical application. Sample preparation involved lipase incubation, protein precipitation with ethanol, and liquid–liquid extraction with hexane/ethyl; optimization was performed for sample preparation and LC separation. Linearity was 50–10 000 pg/mL for VK1, MK-4, and MK-7. The total coefficient of variation (%) for VK1, MK-4, and MK-7 ranged from 8.5% to 10.4%, 8.0% to 10.4%, and 7.0% to 11.1%, respectively. Recovery of VK1, MK-4, and MK-7 was 82.3%–110.6%, 92.3%–110.6%, and 89.5%–117.8%, respectively. VK1 and MK-7 were detected in the serum of all 50 healthy subjects, whereas MK-4 was detected in only 13 (26%) subjects. Approximately 53.3% (8/15) had no detectable vitamin K in their cerebrospinal fluid. The developed method exhibited satisfactory performance and was applicable for detecting VK1, MK-4, and MK-7 in serum and cerebrospinal fluid.</p>\n </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"60 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5120","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Adequate vitamin K is crucial for optimal health. Although vitamin K detection methods have been established using liquid chromatography–tandem mass spectrometry (LC–MS/MS), some limitations remain. Therefore, we aimed to establish a stable and rapid LC–MS/MS method that can quantify phylloquinone (VK1), menaquinones-4 (MK-4), and menaquinones-7 (MK-7) in serum and cerebrospinal fluid and explore its clinical applications. We developed an LC–MS/MS method with atmospheric pressure chemical ionization to quantify and validate its performance according to Clinical Laboratory and Standard Institution standards (C62-Ed2). Serums from 50 healthy individuals and cerebrospinal fluid from 15 patients were collected for clinical application. Sample preparation involved lipase incubation, protein precipitation with ethanol, and liquid–liquid extraction with hexane/ethyl; optimization was performed for sample preparation and LC separation. Linearity was 50–10 000 pg/mL for VK1, MK-4, and MK-7. The total coefficient of variation (%) for VK1, MK-4, and MK-7 ranged from 8.5% to 10.4%, 8.0% to 10.4%, and 7.0% to 11.1%, respectively. Recovery of VK1, MK-4, and MK-7 was 82.3%–110.6%, 92.3%–110.6%, and 89.5%–117.8%, respectively. VK1 and MK-7 were detected in the serum of all 50 healthy subjects, whereas MK-4 was detected in only 13 (26%) subjects. Approximately 53.3% (8/15) had no detectable vitamin K in their cerebrospinal fluid. The developed method exhibited satisfactory performance and was applicable for detecting VK1, MK-4, and MK-7 in serum and cerebrospinal fluid.
期刊介绍:
The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions.
The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.