Analysis of Amine Drugs Dissolved in Methanol by High-Resolution Accurate Mass Gas Chromatography Mass Spectrometry, GC-Orbitrap

IF 1.9 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Chee-Leong Kee, Xiaowei Ge, Min-Yong Low, Laura A. Ciolino
{"title":"Analysis of Amine Drugs Dissolved in Methanol by High-Resolution Accurate Mass Gas Chromatography Mass Spectrometry, GC-Orbitrap","authors":"Chee-Leong Kee,&nbsp;Xiaowei Ge,&nbsp;Min-Yong Low,&nbsp;Laura A. Ciolino","doi":"10.1002/jms.5127","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The fragmentation pathways for amines dissolved in methanol (CH<sub>3</sub>OH) or deuterated methanol (CD<sub>3</sub>OD) have been investigated by high-resolution accurate mass gas chromatography mass spectrometry (HRAM-GCMS) or GC-Orbitrap. Primary and secondary amines used in this study were 1,3-dimethylamylamine (1,3-DMAA) and ephedrine hydrochloride (Eph), respectively. For isotopic labeling experiment, <i>1S</i>, 2<i>R</i> (+) ephedrine-D<sub>3</sub> hydrochloride (D<sub>3</sub>-Eph) was used. Under splitless injection mode at an inlet temperature of 250°C, formaldehyde and its deuterated form were generated from CH<sub>3</sub>OH and CD<sub>3</sub>OD, respectively. This was evidenced by the oxonium ions generated from each solvent. When 1,3-DMAA was dissolved in CH<sub>3</sub>OH or CD<sub>3</sub>OD, distinct separation between the unreacted amine and condensation product fragments was observed, specifically methylene-imine (M + 12) and deuteromethylene-imine (M + 14) artifacts. More complex condensation patterns for Eph and D<sub>3</sub>-Eph were observed, attributed to the labile hydrogen/deuterium exchange and gradual deuteration from CH<sub>3</sub>OH to CD<sub>3</sub>OD. The fragmentation pathways were supported by the presence of oxazolidine intermediates before forming smaller condensation product fragments. Despite their close retention time and mass, the HRAM data distinguished the isobaric unreacted amine and condensation product fragments produced by Eph and D<sub>3</sub>-Eph in the coeluting region.</p>\n </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"60 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5127","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The fragmentation pathways for amines dissolved in methanol (CH3OH) or deuterated methanol (CD3OD) have been investigated by high-resolution accurate mass gas chromatography mass spectrometry (HRAM-GCMS) or GC-Orbitrap. Primary and secondary amines used in this study were 1,3-dimethylamylamine (1,3-DMAA) and ephedrine hydrochloride (Eph), respectively. For isotopic labeling experiment, 1S, 2R (+) ephedrine-D3 hydrochloride (D3-Eph) was used. Under splitless injection mode at an inlet temperature of 250°C, formaldehyde and its deuterated form were generated from CH3OH and CD3OD, respectively. This was evidenced by the oxonium ions generated from each solvent. When 1,3-DMAA was dissolved in CH3OH or CD3OD, distinct separation between the unreacted amine and condensation product fragments was observed, specifically methylene-imine (M + 12) and deuteromethylene-imine (M + 14) artifacts. More complex condensation patterns for Eph and D3-Eph were observed, attributed to the labile hydrogen/deuterium exchange and gradual deuteration from CH3OH to CD3OD. The fragmentation pathways were supported by the presence of oxazolidine intermediates before forming smaller condensation product fragments. Despite their close retention time and mass, the HRAM data distinguished the isobaric unreacted amine and condensation product fragments produced by Eph and D3-Eph in the coeluting region.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mass Spectrometry
Journal of Mass Spectrometry 化学-光谱学
CiteScore
5.10
自引率
0.00%
发文量
84
审稿时长
1.5 months
期刊介绍: The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions. The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信