Analysis of Amine Drugs Dissolved in Methanol by High-Resolution Accurate Mass Gas Chromatography Mass Spectrometry, GC-Orbitrap

IF 1.9 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Chee-Leong Kee, Xiaowei Ge, Min-Yong Low, Laura A. Ciolino
{"title":"Analysis of Amine Drugs Dissolved in Methanol by High-Resolution Accurate Mass Gas Chromatography Mass Spectrometry, GC-Orbitrap","authors":"Chee-Leong Kee,&nbsp;Xiaowei Ge,&nbsp;Min-Yong Low,&nbsp;Laura A. Ciolino","doi":"10.1002/jms.5127","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The fragmentation pathways for amines dissolved in methanol (CH<sub>3</sub>OH) or deuterated methanol (CD<sub>3</sub>OD) have been investigated by high-resolution accurate mass gas chromatography mass spectrometry (HRAM-GCMS) or GC-Orbitrap. Primary and secondary amines used in this study were 1,3-dimethylamylamine (1,3-DMAA) and ephedrine hydrochloride (Eph), respectively. For isotopic labeling experiment, <i>1S</i>, 2<i>R</i> (+) ephedrine-D<sub>3</sub> hydrochloride (D<sub>3</sub>-Eph) was used. Under splitless injection mode at an inlet temperature of 250°C, formaldehyde and its deuterated form were generated from CH<sub>3</sub>OH and CD<sub>3</sub>OD, respectively. This was evidenced by the oxonium ions generated from each solvent. When 1,3-DMAA was dissolved in CH<sub>3</sub>OH or CD<sub>3</sub>OD, distinct separation between the unreacted amine and condensation product fragments was observed, specifically methylene-imine (M + 12) and deuteromethylene-imine (M + 14) artifacts. More complex condensation patterns for Eph and D<sub>3</sub>-Eph were observed, attributed to the labile hydrogen/deuterium exchange and gradual deuteration from CH<sub>3</sub>OH to CD<sub>3</sub>OD. The fragmentation pathways were supported by the presence of oxazolidine intermediates before forming smaller condensation product fragments. Despite their close retention time and mass, the HRAM data distinguished the isobaric unreacted amine and condensation product fragments produced by Eph and D<sub>3</sub>-Eph in the coeluting region.</p>\n </div>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":"60 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5127","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The fragmentation pathways for amines dissolved in methanol (CH3OH) or deuterated methanol (CD3OD) have been investigated by high-resolution accurate mass gas chromatography mass spectrometry (HRAM-GCMS) or GC-Orbitrap. Primary and secondary amines used in this study were 1,3-dimethylamylamine (1,3-DMAA) and ephedrine hydrochloride (Eph), respectively. For isotopic labeling experiment, 1S, 2R (+) ephedrine-D3 hydrochloride (D3-Eph) was used. Under splitless injection mode at an inlet temperature of 250°C, formaldehyde and its deuterated form were generated from CH3OH and CD3OD, respectively. This was evidenced by the oxonium ions generated from each solvent. When 1,3-DMAA was dissolved in CH3OH or CD3OD, distinct separation between the unreacted amine and condensation product fragments was observed, specifically methylene-imine (M + 12) and deuteromethylene-imine (M + 14) artifacts. More complex condensation patterns for Eph and D3-Eph were observed, attributed to the labile hydrogen/deuterium exchange and gradual deuteration from CH3OH to CD3OD. The fragmentation pathways were supported by the presence of oxazolidine intermediates before forming smaller condensation product fragments. Despite their close retention time and mass, the HRAM data distinguished the isobaric unreacted amine and condensation product fragments produced by Eph and D3-Eph in the coeluting region.

高分辨率精确质谱气相色谱-质谱分析甲醇中溶解的胺类药物
采用高分辨率精确质谱-气相色谱-质谱(HRAM-GCMS)或GC-Orbitrap研究了溶解在甲醇(CH3OH)或氘化甲醇(CD3OD)中的胺的裂解途径。本研究使用的一级胺和二级胺分别为1,3-二甲胺(1,3- dmaa)和盐酸麻黄碱(Eph)。同位素标记实验采用1S, 2R(+)麻黄素- d3盐酸盐(D3-Eph)。在进口温度为250℃的无劈裂注射模式下,甲醛分别由CH3OH和CD3OD生成,甲醛的氘化形式分别由CH3OH和CD3OD生成。从每种溶剂中产生的氧离子证明了这一点。当1,3- dmaa溶解于CH3OH或CD3OD中时,观察到未反应胺和缩合产物片段之间有明显的分离,特别是亚甲基亚胺(M + 12)和二亚甲基亚胺(M + 14)产物。Eph和D3-Eph的缩合模式更为复杂,这是由于不稳定的氢/氘交换和CH3OH向CD3OD的逐渐氘化所致。在形成较小的缩合产物片段之前,恶唑烷中间体的存在支持了裂解途径。尽管它们的保留时间和质量相近,但HRAM数据区分出了Eph和D3-Eph产生的等压未反应胺和缩合产物片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mass Spectrometry
Journal of Mass Spectrometry 化学-光谱学
CiteScore
5.10
自引率
0.00%
发文量
84
审稿时长
1.5 months
期刊介绍: The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions. The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信