Journal of Materials Science & Technology最新文献

筛选
英文 中文
Perspective review on factors that influence the stress corrosion of Ti alloys for deep-sea applications 透视影响深海应用钛合金应力腐蚀的因素
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-13 DOI: 10.1016/j.jmst.2024.10.022
Zhen Li, Lin Fan, Li Ma, Tigang Duan, Haibing Zhang, Hou Jian, Mingxian Sun
{"title":"Perspective review on factors that influence the stress corrosion of Ti alloys for deep-sea applications","authors":"Zhen Li, Lin Fan, Li Ma, Tigang Duan, Haibing Zhang, Hou Jian, Mingxian Sun","doi":"10.1016/j.jmst.2024.10.022","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.022","url":null,"abstract":"This paper reviews the current state of knowledge and advances on the stress-corrosion cracking (SCC) of Ti alloys subject to harsh corrosive environments in the deep sea, and presents the knowledge gaps and future directions. A comprehensive review of classifications and applications of Ti alloys for deep-sea engineering indicates that the near-<em>α</em> and <em>α</em> + <em>β</em> Ti alloys with high strength and great weldability are the primary selection for deep-sea equipment. The role of residual stress, microstructure types, alloying elements and corrosive environmental factors on SCC performance of Ti alloys are also summarised. It is revealed that the Ti alloys with Widmanstatten structure show the lowest SCC susceptibility, and alloying of Nb, Mo and Al elements plays a positive role in the boost corrosion resistance of passive film. Synergistic effects of environmental deep-sea factors include high hydrostatic pressure, low dissolved oxygen content, low temperature and decreasing pH levels intensify the SCC of Ti alloys by inducing local dissolution of the passive film and facilitating hydrogen-induced cracking at crack tip. The study also highlights future research requirements in SCC of Ti alloys in deep sea: including the set-up of unified and suitable methods of <em>in-situ</em> and simulated experiments, modeling and predicting of SCC behaviour in real situations, and exploring practical protective strategies specifically. These findings provide a reference for further SCC mechanisms research and promote the microstructure optimisation and performance improvement of the advanced Ti alloy-based material systems for deep-sea engineering.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"102 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From molecular precursors to ultra-high temperature ceramics: A novel synthesis of hafnium carbonitride nanoceramics 从分子前驱体到超高温陶瓷:碳氮化铪纳米陶瓷的新型合成方法
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-13 DOI: 10.1016/j.jmst.2024.10.021
Xue Li, Yulei Zhang, Yanqin Fu, Junhao Zhao, Jiachen Meng
{"title":"From molecular precursors to ultra-high temperature ceramics: A novel synthesis of hafnium carbonitride nanoceramics","authors":"Xue Li, Yulei Zhang, Yanqin Fu, Junhao Zhao, Jiachen Meng","doi":"10.1016/j.jmst.2024.10.021","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.021","url":null,"abstract":"Hafnium carbonitride (HfC<em><sub>x</sub></em>N<sub>1–</sub><em><sub>x</sub></em>) ceramics have drawn considerable interest due to their exceptional mechanical and thermophysical properties. Herein, we report a novel single-source precursor with Hf–N bonds as the main chain and fabricate HfC<em><sub>x</sub></em>N<sub>1–</sub><em><sub>x</sub></em> ceramics after pyrolysis of the precursor. The synthesis, ceramic conversion, and microstructural evolution of the single-source precursor as well as the derived HfC<em><sub>x</sub></em>N<sub>1–</sub><em><sub>x</sub></em> ceramics treated under various atmospheres were investigated. The results indicate that in an argon atmosphere, the nitrogen content within HfC<em><sub>x</sub></em>N<sub>1–</sub><em><sub>x</sub></em> decreases with rising temperature. While under a nitrogen atmosphere, the high concentration of N<sub>2</sub> facilitates the rapid conversion of HfO<sub>2</sub> to Hf<sub>7</sub>O<sub>8</sub>N<sub>4</sub>, which subsequently promotes the transformation of the HfC<em><sub>x</sub></em>N<sub>1–</sub><em><sub>x</sub></em> solid solution ceramics. During this process, there is also an inhibitory effect of N<sub>2</sub> on the tendency of HfN into HfC. Moreover, the desired chemical composition of HfC<em><sub>x</sub></em>N<sub>1–</sub><em><sub>x</sub></em> can be regulated by adjusting the N<sub>2</sub> concentration in the heat treatment atmosphere. The present work proposes a novel strategy for the single-source precursor-derived carbonitride ceramics and provides a deep understanding of the preparation and property modulation of HfC<em><sub>x</sub></em>N<sub>1–</sub><em><sub>x</sub></em> ceramics.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"11 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel fine-grained TiZrCu alloy tailored for marine environment with high microbial corrosion-resistance 为海洋环境量身定制的新型细粒度 TiZrCu 合金具有很强的抗微生物腐蚀能力
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-10 DOI: 10.1016/j.jmst.2024.10.018
Jiaqi Li, Xi Ouyang, Diaofeng Li, Hang Yu, Yaozong Mao, Qing Jia, Zhiqiang Zhang, Mingxing Zhang, Chunguang Bai, Fuhui Wang, Dake Xu
{"title":"A novel fine-grained TiZrCu alloy tailored for marine environment with high microbial corrosion-resistance","authors":"Jiaqi Li, Xi Ouyang, Diaofeng Li, Hang Yu, Yaozong Mao, Qing Jia, Zhiqiang Zhang, Mingxing Zhang, Chunguang Bai, Fuhui Wang, Dake Xu","doi":"10.1016/j.jmst.2024.10.018","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.018","url":null,"abstract":"Titanium alloys, usually known as non-corrodible material, are susceptible to microbiologically influenced corrosion (MIC) in marine environment. While titanium-zirconium (TiZr) alloys have been extensively studied in medical applications, the influence of microorganisms, especially marine microorganisms, on their corrosion behavior has not been explored. In this work, a TiZrCu alloy with a combination of excellent mechanical, anti-corrosion, and antibacterial properties was developed by optimizing the Cu content and grain refinement. Its MIC and antibacterial mechanisms against <em>Pseudomonas aeruginosa</em>, a representative marine microorganism, were systematically investigated. 5.5 wt% was determined as the optimal copper content. The fine-grained Ti-15Zr-5.5Cu (TZC-5.5FG) alloy maintained high MIC resistance, exhibiting a corrosion current of 5.7 ± 0.1 nA/cm<sup>2</sup> and an antibacterial rate of 91.8 % against <em>P. aeruginosa</em>. The mechanism of improved corrosion resistance was attributed to the denser passive film with high TiO<sub>2</sub> content and the lower surface potential difference Δ<em>E</em>. The release of Cu<sup>2+</sup> ions, Δ<em>E,</em> and the generation of ROS are three major factors that contribute to the antibacterial performance of TiZrCu alloys. Compared to other available marine metals, TZC-5.5FG alloy exhibited superior comprehensive performance, including excellent mechanical properties and anti-MIC capacity, which make it a promising material for load-bearing applications in marine environment.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"35 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastrong and ductile superalloy joints bonded with a novel composite interlayer modified by high entropy alloy 用高熵合金改性的新型复合夹层粘接的超强韧性超级合金接头
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-10 DOI: 10.1016/j.jmst.2024.08.072
L. Yuan, F.Y. Jiang, D. Hao, Y.Z. Yang, T.H. Chou, J.X. Zhang, J. Gan, J.L. Li, J.T. Xiong, T. Yang
{"title":"Ultrastrong and ductile superalloy joints bonded with a novel composite interlayer modified by high entropy alloy","authors":"L. Yuan, F.Y. Jiang, D. Hao, Y.Z. Yang, T.H. Chou, J.X. Zhang, J. Gan, J.L. Li, J.T. Xiong, T. Yang","doi":"10.1016/j.jmst.2024.08.072","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.08.072","url":null,"abstract":"Diffusion bonding (DB) with interlayers is sought-after for manufacturing high-performance turbine disks of powder metallurgy (PM) superalloys with precise and intricate inner cavity structures. Developing novel interlayer materials is challenging but crucial for enhancing bonding quality and joint properties. We designed a multi-interlayer composite bonding (MICB) method, employing sandwich-structured interlayers of “BNi2/high entropy alloy (HEA)/BNi2”, to join a PM superalloy FGH98. The MICB joint exhibited an ultrahigh shear strength of ∼1132 MPa and exceptional ductility, indicating a typical ductile fracture pattern with numerous dimples. Owing to the introduction of liquid BNi2 interlayer, initial bonding interfaces were eliminated and replaced by newborn grain boundaries (GBs), preventing brittle interfacial fracture. Due to the diffusion of Al/Ti/Ta from the base metals (BMs), massive ordered γ' nanoparticles also precipitated in the joint. Moreover, the addition of HEA foil reduced the stacking fault energy (SFE) of the joint and facilitated the formation of deformation twins (DTs). Thus, during the deformation process, the γ' nanoparticles, and multiple substructures like stacking faults (SFs), Lomer-Cottrell (L-C) locks, DTs, and 9R phases enhanced the work-hardening capability and strengthened the joint. Simultaneously, the multiplication and interaction of DTs induced a softening mechanism of dynamic recrystallization (DRX) during the entire deformation process and dominated when the plastic instability occurred, resulting in numerous adiabatic shear bands (ASBs) consisting of γ/γ' nano-bands, which indicates a significant improvement of the joint ductility.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"46 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneering SubPc-Br/CdS S-scheme heterojunctions: Achieving superior photocatalytic oxidation through enhanced radical synergy and photocorrosion mitigation 开创性的 SubPc-Br/CdS S 型异质结:通过增强自由基协同作用和减缓光腐蚀实现卓越的光催化氧化作用
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-09 DOI: 10.1016/j.jmst.2024.10.017
Shengqian Liang, Min Ma, Zheng Zheng, Jiahang Song, Yijian Zhou, Enzhou Liu, Haixia Ma, Bing Wang, Bo Zhou, Yan Nie, Zhuo Li
{"title":"Pioneering SubPc-Br/CdS S-scheme heterojunctions: Achieving superior photocatalytic oxidation through enhanced radical synergy and photocorrosion mitigation","authors":"Shengqian Liang, Min Ma, Zheng Zheng, Jiahang Song, Yijian Zhou, Enzhou Liu, Haixia Ma, Bing Wang, Bo Zhou, Yan Nie, Zhuo Li","doi":"10.1016/j.jmst.2024.10.017","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.017","url":null,"abstract":"For the efficient harnessing of solar energy and mitigation of environmental pollution, the development and application of semiconductor photocatalysis technology is paramount. Herein, a novel SubPc-Br/CdS supramolecular array with an S-scheme heterojunction was synthesized through the intermolecular π-stacked self-assembly of subphthalocyanine (SubPc-Br) and nanometer cadmium sulfide (CdS). This self-assembly system features a highly structured architecture and excellent stability. Experiments and ground-state differential charge calculations demonstrate that SubPc-Br and CdS form a built-in electric field during the self-assembly process, a critical factor in promoting the dissociation of electrons and holes. Additionally, this study utilized time-dependent density functional theory (TDDFT) to simulate the dynamic adsorption behavior of excited oxygen molecules on the SubPc-Br/CdS interface for the first time. The analysis of molecular charge differential density under different excited states proved that the addition of SubPc-Br molecules not only improves the photocorrosion resistance of CdS in an O<sub>2</sub> adsorption environment but also enhances the production of advanced reactive oxygen species under the synergistic action of h<sup>+</sup> and ·O<sub>2</sub><sup>–</sup>. When subjected to visible light, the degradation efficiency of minocycline (MC) achieved 96.8% within 60 min and maintained 80.3% after 5 cycles. In summary, this study highlights the feasibility of creating advanced S-scheme heterojunction photocatalysts through the strategic incorporation of organic supramolecules with semiconductor catalysts.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"150 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A significant improvement in corrosion resistance and biocompatibility in ZrNbTiCrCu high-entropy films induced by the precipitation of Cu 铜沉淀诱导 ZrNbTiCrCu 高熵薄膜耐腐蚀性和生物相容性的显著改善
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-08 DOI: 10.1016/j.jmst.2024.10.016
Xiaofei Ma, Ping Ren, Shangzhou Zhang, Xiaochun He, Yang Li, Xuelei Yin, Huanyu Li, Shizeng Dang, Daliang Yu, Jianxun Qiu, Xin Zhou, Bing Zhou
{"title":"A significant improvement in corrosion resistance and biocompatibility in ZrNbTiCrCu high-entropy films induced by the precipitation of Cu","authors":"Xiaofei Ma, Ping Ren, Shangzhou Zhang, Xiaochun He, Yang Li, Xuelei Yin, Huanyu Li, Shizeng Dang, Daliang Yu, Jianxun Qiu, Xin Zhou, Bing Zhou","doi":"10.1016/j.jmst.2024.10.016","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.016","url":null,"abstract":"Utilizing nanotechnology and composites to create a protective film on titanium alloy is an effective means of achieving the desired high performance. Self-assembly of nanocomposite structures offers a promising route to forming high entropy alloy films (HEAFs), but controlled preparation remains challenging. This work used magnetron sputtering through adjusting preparation parameters to prepare ZrNbTiCrCu HEAFs, achieving a significant improvement in corrosion resistance and biocompatibility induced by the precipitation of Cu. According to the electrochemical corrosion test, without obvious corrosion pits on the surface of S2 after corrosion, a passivation film composed of bimetallic oxide CuCrO<sub>2</sub> formed on the film surface, indicating that ZrNbTiCrCu HEAFs have remarkable corrosion resistance performance. In the cytocompatibility experiment, the cell viability of HEAFs reached over 95 % due to the precipitation of Cu, suggesting their excellent biocompatibility. In addition, ZrNbTiCrCu HEAFs exhibit outstanding antibacterial ability, especially when the sputtering current is 0.6 A, and the in vitro antibacterial rate of the sample against Escherichia coli is close to 99 %.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"244 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic stress corrosion cracking susceptibility of Mg-8Gd-3Y-0.5Zr alloy Mg-8Gd-3Y-0.5Zr 合金的各向异性应力腐蚀开裂敏感性
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-08 DOI: 10.1016/j.jmst.2024.11.001
Jia Zeng, Jiaqi Li, Jingya Wang, Kai Chen, Zhao Shen
{"title":"Anisotropic stress corrosion cracking susceptibility of Mg-8Gd-3Y-0.5Zr alloy","authors":"Jia Zeng, Jiaqi Li, Jingya Wang, Kai Chen, Zhao Shen","doi":"10.1016/j.jmst.2024.11.001","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.11.001","url":null,"abstract":"This study investigates the stress corrosion cracking (SCC) behavior of a Mg-8Gd-3Y-0.5Zr alloy in a 3.5 wt.% NaCl solution using slow strain rate tensile (SSRT) testing. The results reveal that SCC susceptibility increases as the strain rate decreases, with hydrogen embrittlement (HE) becoming more dominant at lower strain rates, leading to brittle fracture. Anodic dissolution (AD) plays a more significant role at higher strain rates, resulting in mixed fracture modes. Additionally, the mechanical properties and SCC resistance are strongly influenced by the sample orientation. TD-oriented samples show higher SCC susceptibility than RD-oriented ones due to the alignment of Gd- and Y-rich precipitates and grain boundaries, which act as initiation sites for SCC. These precipitates form micro-galvanic couples with the Mg matrix, accelerating localized corrosion and HE. The findings provide insights into the SCC mechanisms of VW83 alloy and highlight the importance of optimizing microstructure and processing conditions to improve its corrosion resistance.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"30 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A facile strategy for customizing multifunctional magnetic‑dielectric carbon microflower superstructures deposited with carbon nanotubes 定制碳纳米管沉积的多功能磁介质碳微花超结构的简便策略
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-08 DOI: 10.1016/j.jmst.2024.10.019
Chengjuan Wang, Yanxiang Wang, Haotian Jiang, Yanqiu Feng, Deli Yang, Chengguo Wang
{"title":"A facile strategy for customizing multifunctional magnetic‑dielectric carbon microflower superstructures deposited with carbon nanotubes","authors":"Chengjuan Wang, Yanxiang Wang, Haotian Jiang, Yanqiu Feng, Deli Yang, Chengguo Wang","doi":"10.1016/j.jmst.2024.10.019","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.019","url":null,"abstract":"The novel fabrication of multiple components and unique heterostructure can inject infinite vitality into the electromagnetic wave (EMW) attenuation field. Herein, through the self-assembly of polyimide complexes and catalytic chemical vapor deposition, porous carbon microflowers were synthesized accompanied by carbon nanotubes (CNTs). By regulating the metal ions, the composition and structure of the as-obtained hybrids are modified correspondingly, and thus the adjustable thermal management and EMW absorption capabilities are obtained. In detail, the rich pores and huge specific surface area endow the hierarchical structures with distinguished thermal insulation ability (<em>λ</em>&lt;0.07). The carbon framework and CNTs are beneficial for consuming EMWs via conductive loss and defect polarization loss while reducing the filling ratio and thickness. The doped heteroatoms and abundant heterointerfaces generate ample dipole polarization and interface polarization losses (supported by DFT calculation). The metal nanoparticles uniformly embedded in the carbon framework offer optimized impedance matching, proper defect polarization, and suitable magnetic loss. Accordingly, the synergy of magnetic-dielectric balance and flower-like superstructure enables FNCFN2 and NNCFN2 to accomplish remarkable microwave absorbing capacity with thin thickness (14 wt.%). Therefore, respectable specific reflection loss and specific effective absorption bandwidth are acquired (215.39 dB mm<sup>–1</sup> and 22.10 GHz mm<sup>–1</sup>, 257.23 dB mm<sup>–1</sup> and 22.12 GHz mm<sup>–1</sup> respectively), superior to those of certain renowned carbon-based absorbers. The simulation results of electric field intensity distributions, power loss density, and radar cross section reduction (maximum value of 36.02 dBm<sup>2</sup>) also verify the prominent radar stealth capability. Moreover, the customizable approach can be applied to other metals to obtain fulfilling behaviors. Henceforth, this work provides profound insights into the relationship between structure and performance, and proposes an efficient path for mass-producing multifunctional and high-performance EMW absorbers with excellent thermal properties.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"127 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High volumetric-energy-density flexible supercapacitors based on PEDOT:PSS incorporated with carbon quantum dots hybrid electrodes 基于 PEDOT:PSS 与碳量子点混合电极的高体积能量密度柔性超级电容器
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-08 DOI: 10.1016/j.jmst.2024.08.073
Dinh Cung Tien Nguyen, Seonghan Kim, Bo-Seok Kim, Sejung Kim, Soo-Hyoung Lee
{"title":"High volumetric-energy-density flexible supercapacitors based on PEDOT:PSS incorporated with carbon quantum dots hybrid electrodes","authors":"Dinh Cung Tien Nguyen, Seonghan Kim, Bo-Seok Kim, Sejung Kim, Soo-Hyoung Lee","doi":"10.1016/j.jmst.2024.08.073","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.08.073","url":null,"abstract":"Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic devices. Nevertheless, employing PEDOT:PSS in supercapacitors (SC) in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability. To surmount these limitations, PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes, which exhibit physical and chemical stability during SC operation. We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots (CQDs). The CQDs were synthesized under microwave irradiation, yielding green- and red-light emissions. Through optimizing the ratios of CQDs to PEDOT:PSS, the SC electrodes were prepared using a spray-coating technique, marking a significant improvement in device performance with a high volumetric capacitance (104.10 F cm<sup>−3</sup>), impressive energy density (19.68 Wh cm<sup>−3</sup>), and excellent cyclic stability, retaining ∼85% of its original volumetric capacitance after 15,000 repeated GCD cycles. Moreover, the SCs, when utilized as a flexible substrate, demonstrated the ability to maintain up to ∼85% of their electrochemical performance even after 3,000 bending cycles (at a bending angle of 60°). These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"95 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the interaction between corrosion products and oxygen reduction on the corrosion of Mg–4Nd–0.4Zr alloy under thin electrolyte layers 揭示腐蚀产物和氧还原对薄电解质层下 Mg-4Nd-0.4Zr 合金腐蚀的相互作用
IF 10.9 1区 材料科学
Journal of Materials Science & Technology Pub Date : 2024-11-02 DOI: 10.1016/j.jmst.2024.10.010
Ningning Dan, Yao Yang, Tao Ying, Xiaoqin Zeng
{"title":"Unveiling the interaction between corrosion products and oxygen reduction on the corrosion of Mg–4Nd–0.4Zr alloy under thin electrolyte layers","authors":"Ningning Dan, Yao Yang, Tao Ying, Xiaoqin Zeng","doi":"10.1016/j.jmst.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.jmst.2024.10.010","url":null,"abstract":"Although hydrogen evolution reaction (HER) is considered to be the main cathodic reaction of Mg corrosion, oxygen reduction reaction (ORR) has been recently confirmed to be a secondary cathodic reaction. The factors affecting ORR of magnesium (Mg) alloys are still unclear, especially in cases under thin electrolyte layers (TEL). In this work, the influence of the corrosion product films on the cathodic reactions of Mg alloys under TEL and in a bulk solution was investigated. ORR does not influence the hydrogen evolution rates in the corrosion of Mg alloys. Therefore, with the existence of oxygen, corrosion rates of Mg alloys measured by hydrogen evolution tests are not accurate under TEL. And weight loss test is a more accurate method to evaluate Mg corrosion rates under TEL. ORR was confirmed to participate in the corrosion of Mg–4Nd–0.4Zr, Mg–4Nd and Mg–0.4Zr alloys under TEL. In 100-μm TEL, the highest contribution of ORR in cathodic reactions for the corrosion of Mg–4Nd–0.4Zr, Mg–4Nd and Mg–0.4Zr alloys are 28.6%, 39.1%, and 35.8%, respectively. The more protective film on Mg–4Nd–0.4Zr alloy provides a stronger inhibition effect against the diffusion of oxygen, leading to decreased ORR contribution in cathodic reactions. In addition, it is suggested that the preparation of Mg alloys with protective corrosion product films can inhibit the corrosion induced by ORR in the atmosphere. This work emphasizes the effects of corrosion product films on ORR in <span><span>Mg corrosion</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span>, especially under TEL.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"241 1","pages":""},"PeriodicalIF":10.9,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信