Ibrahim Ondicho, Lachlan Smillie, Majid Laleh, Jaemin Wang, Jae Heung Lee, Hyeonseok Kwon, Byeong-Joo Lee, Germanas Peleckis, Hyoung Seop Kim, Azdiar A. Gazder
{"title":"Sigma phase formation and chemical short-range ordering during the isochronal annealing of a metastable medium-entropy alloy","authors":"Ibrahim Ondicho, Lachlan Smillie, Majid Laleh, Jaemin Wang, Jae Heung Lee, Hyeonseok Kwon, Byeong-Joo Lee, Germanas Peleckis, Hyoung Seop Kim, Azdiar A. Gazder","doi":"10.1016/j.jmst.2025.01.055","DOIUrl":null,"url":null,"abstract":"Medium-entropy alloys (MEAs) have garnered significant interest due to their unique mechanical properties, but phase instabilities such as the formation of brittle sigma (σ) phase during annealing pose challenges to their practical application. This study investigates the microstructural evolution and mechanical behavior of an 80% cold-rolled Fe<sub>45</sub>Co<sub>35</sub>Cr<sub>10</sub>V<sub>10</sub> medium-entropy alloy that was isochronally annealed between 100°C and 900°C for 300 s and characterized using hardness indentations, in-situ X-ray diffraction, and thermodynamic calculations, with high-resolution electron microscopy detailing microstructural evolution at 625°C, 675°C, and 725°C. The results show increases in Vickers hardness between 500°C and 625°C, attributed to the nucleation of a Cr- and V-rich sigma (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3C3;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 572.5 600.2\" width=\"1.33ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C3\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">σ</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">σ</mi></math></script></span>) phase, primarily at the bcc grain boundaries. Beyond 625°C, the hardness decreased due to <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3C3;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 572.5 600.2\" width=\"1.33ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C3\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">σ</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">σ</mi></math></script></span>-phase dissolution, recovery of bcc and fcc phases, bcc<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">&#x2192;</mo></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.625ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -598.2 1000.5 699.5\" width=\"2.324ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2192\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">→</mo></math></span></span><script type=\"math/mml\"><math><mo is=\"true\">→</mo></math></script></span>fcc phase reversion, and recrystallization of the reverted fcc phase. Scanning-transmission electron microscopy and transmission Kikuchi diffraction revealed a Kurdjumov-Sachs orientation relationship (OR) at 675°C and a near Nishiyama-Wassermann OR at 725°C for bcc-fcc interfaces, whereas bcc-<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3C3;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 572.5 600.2\" width=\"1.33ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C3\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">σ</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">σ</mi></math></script></span> and fcc-<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3C3;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 572.5 600.2\" width=\"1.33ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C3\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">σ</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">σ</mi></math></script></span> interfaces showed no dominant OR. In addition to <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3C3;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 572.5 600.2\" width=\"1.33ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C3\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">σ</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">σ</mi></math></script></span> phase, two types of bcc phase were identified at 625°C. Type 1 bcc initially retained a near-nominal composition and a disordered crystal structure from deformation-induced bcc martensite but gradually became Fe-enriched and Cr- and V-depleted up to 725°C. In contrast, Type 2 bcc phase was Fe-depleted and Co-enriched at 625°C but disappeared at 675°C, coinciding with the onset of bcc <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">&#x2192;</mo></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.625ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -598.2 1000.5 699.5\" width=\"2.324ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2192\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo is=\"true\">→</mo></math></span></span><script type=\"math/mml\"><math><mo is=\"true\">→</mo></math></script></span> fcc phase reversion. This phase also exhibited B2-like chemical short-range ordering, with alternating FeCo-rich and CrV-rich domains. This study provides insights into the complex phase transformation occurring between 500°C and 725°C in a Fe<sub>45</sub>Co<sub>35</sub>Cr<sub>10</sub>V<sub>10</sub> medium-entropy alloy, which can be leveraged to design alloys with optimized mechanical properties for practical applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"35 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.055","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Medium-entropy alloys (MEAs) have garnered significant interest due to their unique mechanical properties, but phase instabilities such as the formation of brittle sigma (σ) phase during annealing pose challenges to their practical application. This study investigates the microstructural evolution and mechanical behavior of an 80% cold-rolled Fe45Co35Cr10V10 medium-entropy alloy that was isochronally annealed between 100°C and 900°C for 300 s and characterized using hardness indentations, in-situ X-ray diffraction, and thermodynamic calculations, with high-resolution electron microscopy detailing microstructural evolution at 625°C, 675°C, and 725°C. The results show increases in Vickers hardness between 500°C and 625°C, attributed to the nucleation of a Cr- and V-rich sigma () phase, primarily at the bcc grain boundaries. Beyond 625°C, the hardness decreased due to -phase dissolution, recovery of bcc and fcc phases, bccfcc phase reversion, and recrystallization of the reverted fcc phase. Scanning-transmission electron microscopy and transmission Kikuchi diffraction revealed a Kurdjumov-Sachs orientation relationship (OR) at 675°C and a near Nishiyama-Wassermann OR at 725°C for bcc-fcc interfaces, whereas bcc- and fcc- interfaces showed no dominant OR. In addition to phase, two types of bcc phase were identified at 625°C. Type 1 bcc initially retained a near-nominal composition and a disordered crystal structure from deformation-induced bcc martensite but gradually became Fe-enriched and Cr- and V-depleted up to 725°C. In contrast, Type 2 bcc phase was Fe-depleted and Co-enriched at 625°C but disappeared at 675°C, coinciding with the onset of bcc fcc phase reversion. This phase also exhibited B2-like chemical short-range ordering, with alternating FeCo-rich and CrV-rich domains. This study provides insights into the complex phase transformation occurring between 500°C and 725°C in a Fe45Co35Cr10V10 medium-entropy alloy, which can be leveraged to design alloys with optimized mechanical properties for practical applications.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.