Marte G. Hofsteenge, Nicolas J. Cullen, Jonathan P. Conway, Carleen H. Reijmer, Michiel R. van den Broeke, Marwan Katurji
{"title":"Meteorological drivers of melt at two nearby glaciers in the McMurdo Dry Valleys of Antarctica","authors":"Marte G. Hofsteenge, Nicolas J. Cullen, Jonathan P. Conway, Carleen H. Reijmer, Michiel R. van den Broeke, Marwan Katurji","doi":"10.1017/jog.2023.98","DOIUrl":"https://doi.org/10.1017/jog.2023.98","url":null,"abstract":"<p>We study the meteorological drivers of melt at two glaciers in Taylor Valley, Antarctica, using 22 years of weather station observations and surface energy fluxes. The glaciers are located only 30 km apart, but have different local climates; Taylor Glacier is generally drier and windier than Commonwealth Glacier, which receives more snowfall due to its proximity to the coast. Commonwealth Glacier shows more inter-annual melt variability, explained by variable albedo due to summer snowfall events. A significant increase in surface melt at Commonwealth Glacier is associated with a decrease in summer minimum albedo. Inter-annual variability in melt at both glaciers is linked to degree-days above freezing during föhn events, occurring more frequently at Taylor Glacier. At Taylor Glacier melt occurs most often with positive air temperatures, but föhn conditions also favour sublimation, which cools the surface and prevents melt for the majority of the positive air temperatures. At Commonwealth Glacier, most of the melt instead occurs with sub-zero air temperatures, driven by strong solar radiative heating. Future melt at Taylor Glacier will likely be more sensitive to changes in föhn events, while Commonwealth Glacier will be impacted more by changes in near coastal weather, where moisture inputs can drive cloud cover, snowfall and change albedo.</p>","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"108 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138715827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim Hill, G. Flowers, Matthew J. Hoffman, Derek Bingham, M. Werder
{"title":"Improved representation of laminar and turbulent sheet flow in subglacial drainage models","authors":"Tim Hill, G. Flowers, Matthew J. Hoffman, Derek Bingham, M. Werder","doi":"10.1017/jog.2023.103","DOIUrl":"https://doi.org/10.1017/jog.2023.103","url":null,"abstract":": Subglacial hydrology models struggle to reproduce seasonal drainage patterns that are consistent with observed subglacial water pressures and surface velocities. We modify the standard sheet-flow parameterization within a coupled sheet--channel subglacial drainage model to smoothly transition between laminar and turbulent flow based on the locally computed Reynolds number in a physically consistent way (the \"transition\" model). We compare the transition model to standard laminar and turbulent models to assess the role of the sheet-flow parameterization in reconciling observed and modelled water pressures under idealized and realistic forcing. Relative to the turbulent model, the laminar and transition models improve seasonal simulations by increasing winter water pressure and producing a more prominent late-summer water pressure minimum. In contrast to the laminar model, the transition model remains consistent with its own internal assumptions across all flow regimes. Based on the internal consistency of the","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"7 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139009272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inka Koch, Reinhard Drews, Steven Franke, Daniela Jansen, Falk Marius Oraschewski, Leah Sophie Muhle, Vjeran Višnjević, Kenichi Matsuoka, Frank Pattyn, Olaf Eisen
{"title":"Radar internal reflection horizons from multisystem data reflect ice dynamic and surface accumulation history along the Princess Ragnhild Coast, Dronning Maud Land, East Antarctica","authors":"Inka Koch, Reinhard Drews, Steven Franke, Daniela Jansen, Falk Marius Oraschewski, Leah Sophie Muhle, Vjeran Višnjević, Kenichi Matsuoka, Frank Pattyn, Olaf Eisen","doi":"10.1017/jog.2023.93","DOIUrl":"https://doi.org/10.1017/jog.2023.93","url":null,"abstract":"<p>Ice shelves, which regulate ice flow from the Antarctic ice sheet towards the ocean, are shaped by spatiotemporal patterns of surface accumulation, surface/basal melt and ice dynamics. Therefore, an ice dynamic and accumulation history are imprinted in the internal ice stratigraphy, which can be imaged by radar in the form of internal reflection horizons (IRHs). Here, IRHs were derived from radar data combined across radar platforms (airborne and ground-based) in coastal eastern Dronning Maud Land (East Antarctica), comprising three ice rises and adjacent two ice shelves. To facilitate interpretation of dominant spatiotemporal patterns of processes shaping the local IRH geometry, traced IRHs are classified into three different types (laterally continuous, discontinuous or absent/IRH-free). Near-surface laterally continuous IRHs reveal local accumulation patterns, reflecting the mean easterly wind direction, and correlate with surface slopes. Areas of current and past increased ice flow and internal deformation are marked by discontinuous or IRH-free zones, and can inform about paleo ice-stream dynamics. The established IRH datasets extend continent-wide mapping efforts of IRHs to an important and climatically sensitive ice marginal region of Antarctica and are ready for integration into ice-flow models to improve predictions of Antarctic ice drainage.</p>","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"23 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138574374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine A. Deakin, Frazer D. W. Christie, Karla Boxall, Ian C. Willis
{"title":"Oscillatory response of Larsen C Ice Shelf flow to the calving of iceberg A-68","authors":"Katherine A. Deakin, Frazer D. W. Christie, Karla Boxall, Ian C. Willis","doi":"10.1017/jog.2023.102","DOIUrl":"https://doi.org/10.1017/jog.2023.102","url":null,"abstract":"","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"7 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138980163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Douglas I. Benn, Joe Todd, Adrian Luckman, Suzanne Bevan, Thomas R. Chudley, Jan Åström, Thomas Zwinger, Samuel Cook, Poul Christoffersen
{"title":"Controls on calving at a large Greenland tidewater glacier: stress regime, self-organised criticality and the crevasse-depth calving law","authors":"Douglas I. Benn, Joe Todd, Adrian Luckman, Suzanne Bevan, Thomas R. Chudley, Jan Åström, Thomas Zwinger, Samuel Cook, Poul Christoffersen","doi":"10.1017/jog.2023.81","DOIUrl":"https://doi.org/10.1017/jog.2023.81","url":null,"abstract":"We investigate the physical basis of the crevasse-depth (CD) calving law by analysing relationships between glaciological stresses and calving behaviour at Sermeq Kujalleq (Store Glacier), Greenland. Our observations and model simulations show that the glacier has a stable position defined by a compressive arch between lateral pinning points. Ice advance beyond the arch results in calving back to the stable position; conversely, if melt-undercutting forces the ice front behind the stable position, it readvances because ice velocities exceed subaqueous melt rates. This behaviour is typical of self-organising criticality, in which the stable ice-front position acts as an attractor between unstable super-critical and sub-critical regimes. This perspective provides strong support for a ‘position-law’ approach to modelling calving at Sermeq Kujalleq, because any calving ‘rate’ is simply a by-product of how quickly ice is delivered to the critical point. The CD calving law predicts ice-front position from the penetration of surface and basal crevasse fields, and accurately simulates super-critical calving back to the compressive arch and melt-driven calving into the sub-critical zone. The CD calving law reflects the glaciological controls on calving at Sermeq Kujalleq and exhibits considerable skill in simulating its mean position and seasonal fluctuations.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"1 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The relationship between the permeability and liquid water content of polycrystalline temperate ice","authors":"Jacob R. Fowler, Neal R. Iverson","doi":"10.1017/jog.2023.91","DOIUrl":"https://doi.org/10.1017/jog.2023.91","url":null,"abstract":"To better constrain meltwater transport and ice viscosity in temperate glaciers, particularly in ice stream shear margins, we use a custom permeameter to study the untested model relationship between the permeability of temperate ice and its liquid water content. The permeability of lab-made ice of two mean grain diameters (1.8 and 4.2 mm) is measured, and water content is controlled with the ice salinity and measured calorimetrically. Fluorescein dye is added to through-flowing, chilled water to highlight flow pathways through the ice after experiments. As predicted by a simple model, permeability increases with approximately the square of the water content and by about three orders of magnitude across water contents of 0.1–4.4%. However, permeability values are less than those of the model by average factors of 2.6 and 4.1 for the finer and coarser ice, respectively. This discrepancy is likely due to tortuous, truncated or air-clogged veins. The order-of-magnitude agreement between measured and modeled values may indicate that reduced permeability from these factors is nearly compensated by preferential flow in oversized veins that are isolated or arborescent. Both kinds of preferred flow pathways are observed but the latter only in fine-grained ice at water contents > 2%.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"19 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Holly Still, R. Odolinski, M. H. Bowman, Christina Hulbe, David J. Prior
{"title":"Observing glacier dynamics with low-cost, multi-GNSS positioning in Victoria Land, Antarctica","authors":"Holly Still, R. Odolinski, M. H. Bowman, Christina Hulbe, David J. Prior","doi":"10.1017/jog.2023.101","DOIUrl":"https://doi.org/10.1017/jog.2023.101","url":null,"abstract":"","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"12 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139200544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exceptional thinning through the entire altitudinal range of Mont-Blanc glaciers during the 2021/22 mass balance year","authors":"Etienne Berthier, Christian Vincent, Delphine Six","doi":"10.1017/jog.2023.100","DOIUrl":"https://doi.org/10.1017/jog.2023.100","url":null,"abstract":"<p>Widespread glacier losses have been observed in most glaciated regions on Earth during recent decades, with a typical pattern of strong thinning in their lower reaches and limited elevation changes in their accumulation areas. Here, we use Pléiades satellite stereo-images of the Mont-Blanc massif (Alps) to reveal that thinning took place through the entire elevation range during the exceptional 2021/22 mass-balance year. Above 3000 m a.s.l. on Argentière glacier and Mer de Glace, thinning rates exceeded 3.5 m a<span>−1</span> while almost no change occurred during the previous 9 years. Below 3000 m a.s.l., these anomalous thinning rates are essentially explained by changes in surface mass balance. At higher altitudes, other processes such as firn densification may play a role. Our analysis shows that high altitude glaciers, mostly stable during the last 100 years, are now responding to the impact of climate change.</p>","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"70 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138628899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felicity Alice Holmes, Eef van Dongen, Nina Kirchner
{"title":"Modelled frontal ablation and velocities at Kronebreen, Svalbard, are sensitive to the choice of submarine melt rate scenario","authors":"Felicity Alice Holmes, Eef van Dongen, Nina Kirchner","doi":"10.1017/jog.2023.94","DOIUrl":"https://doi.org/10.1017/jog.2023.94","url":null,"abstract":"Both submarine melt and calving are important for the overall mass balance of marine-terminating glaciers, but uncertainty is rife with regards to the magnitude of the processes. Modelling allows for these processes to be investigated without the need to visit inaccessible ice marginal zones. This study looks at the impact of different submarine melt and sea-ice back pressure scenarios on modelled calving activity and dynamics at Kronebreen, Svalbard, by running separate summer and winter simulations with various submarine melt parameterisations and sea-ice characteristics. It is found that submarine melt is an important driver of seasonal variation in modelled glacier dynamics and calving activity, with the choice of sliding law also exerting a significant influence on results.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"18 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Kavan, Petra Luláková, Jakub Małecki, Mateusz Czesław Strzelecki
{"title":"Capturing the transition from marine to land-terminating glacier from the 126-year retreat history of Nordenskiöldbreen, Svalbard","authors":"Jan Kavan, Petra Luláková, Jakub Małecki, Mateusz Czesław Strzelecki","doi":"10.1017/jog.2023.92","DOIUrl":"https://doi.org/10.1017/jog.2023.92","url":null,"abstract":"Svalbard has experienced a dramatic increase in air temperature and glacier retreat since the end of the Little Ice Age. In many cases, this retreat has resulted in glaciers transitioning from being marine-terminating to land-terminating. Nordenskiöldbreen is an excellent contemporary example of this transition. A set of historical observations of glacier front positions was used to assess Nordenskiöldbreen's retreat rate and we found that the southern portion of the glacier front retreated by ~3500 m, since records began in 1896. The general retreat rate corresponds well with the air temperature trend during most of the 20th century. However, the average retreat rate has slowed since the 1990s despite increasing air temperatures. We show that this discrepancy between air temperature and retreat rate marks the transition from marine-terminating towards a land-terminating glacier, as the glacier's bedrock topography started to play an essential role in the glacier margin geometry, ice flow and retreat dynamics.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"6 10","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}