Jan Kavan, Petra Luláková, Jakub Małecki, Mateusz Czesław Strzelecki
{"title":"Capturing the transition from marine to land-terminating glacier from the 126-year retreat history of Nordenskiöldbreen, Svalbard","authors":"Jan Kavan, Petra Luláková, Jakub Małecki, Mateusz Czesław Strzelecki","doi":"10.1017/jog.2023.92","DOIUrl":null,"url":null,"abstract":"Svalbard has experienced a dramatic increase in air temperature and glacier retreat since the end of the Little Ice Age. In many cases, this retreat has resulted in glaciers transitioning from being marine-terminating to land-terminating. Nordenskiöldbreen is an excellent contemporary example of this transition. A set of historical observations of glacier front positions was used to assess Nordenskiöldbreen's retreat rate and we found that the southern portion of the glacier front retreated by ~3500 m, since records began in 1896. The general retreat rate corresponds well with the air temperature trend during most of the 20th century. However, the average retreat rate has slowed since the 1990s despite increasing air temperatures. We show that this discrepancy between air temperature and retreat rate marks the transition from marine-terminating towards a land-terminating glacier, as the glacier's bedrock topography started to play an essential role in the glacier margin geometry, ice flow and retreat dynamics.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.92","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Svalbard has experienced a dramatic increase in air temperature and glacier retreat since the end of the Little Ice Age. In many cases, this retreat has resulted in glaciers transitioning from being marine-terminating to land-terminating. Nordenskiöldbreen is an excellent contemporary example of this transition. A set of historical observations of glacier front positions was used to assess Nordenskiöldbreen's retreat rate and we found that the southern portion of the glacier front retreated by ~3500 m, since records began in 1896. The general retreat rate corresponds well with the air temperature trend during most of the 20th century. However, the average retreat rate has slowed since the 1990s despite increasing air temperatures. We show that this discrepancy between air temperature and retreat rate marks the transition from marine-terminating towards a land-terminating glacier, as the glacier's bedrock topography started to play an essential role in the glacier margin geometry, ice flow and retreat dynamics.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.