Tim Hill, G. Flowers, Matthew J. Hoffman, Derek Bingham, M. Werder
{"title":"Improved representation of laminar and turbulent sheet flow in subglacial drainage models","authors":"Tim Hill, G. Flowers, Matthew J. Hoffman, Derek Bingham, M. Werder","doi":"10.1017/jog.2023.103","DOIUrl":null,"url":null,"abstract":": Subglacial hydrology models struggle to reproduce seasonal drainage patterns that are consistent with observed subglacial water pressures and surface velocities. We modify the standard sheet-flow parameterization within a coupled sheet--channel subglacial drainage model to smoothly transition between laminar and turbulent flow based on the locally computed Reynolds number in a physically consistent way (the \"transition\" model). We compare the transition model to standard laminar and turbulent models to assess the role of the sheet-flow parameterization in reconciling observed and modelled water pressures under idealized and realistic forcing. Relative to the turbulent model, the laminar and transition models improve seasonal simulations by increasing winter water pressure and producing a more prominent late-summer water pressure minimum. In contrast to the laminar model, the transition model remains consistent with its own internal assumptions across all flow regimes. Based on the internal consistency of the","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.103","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
: Subglacial hydrology models struggle to reproduce seasonal drainage patterns that are consistent with observed subglacial water pressures and surface velocities. We modify the standard sheet-flow parameterization within a coupled sheet--channel subglacial drainage model to smoothly transition between laminar and turbulent flow based on the locally computed Reynolds number in a physically consistent way (the "transition" model). We compare the transition model to standard laminar and turbulent models to assess the role of the sheet-flow parameterization in reconciling observed and modelled water pressures under idealized and realistic forcing. Relative to the turbulent model, the laminar and transition models improve seasonal simulations by increasing winter water pressure and producing a more prominent late-summer water pressure minimum. In contrast to the laminar model, the transition model remains consistent with its own internal assumptions across all flow regimes. Based on the internal consistency of the
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.