{"title":"Electrostatic Charging of Lunar Cavities Governed by the Flow-to-Thermal Speed Ratio: 3D PIC Simulations and a Free-Fall Model","authors":"J. Nakazono, Y. Miyake, W. J. Miloch","doi":"10.1029/2025JA034302","DOIUrl":"https://doi.org/10.1029/2025JA034302","url":null,"abstract":"<p>We use Particle-In-Cell (PIC) simulations to investigate the charging characteristics inside deep cavities on the lunar surface under the solar wind plasma conditions. Specifically, we systematically study the dependence of the cavity bottom potential on plasma flow velocity and cavity aspect ratio. In light of prior results indicating that the charging characteristics are predominantly determined by the cavity aspect ratio, the present analysis employs a rectangular shape for the cavity with a width smaller than the local Debye length. Three flow regimes are then defined according to the ordering among the bulk flow velocity (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mi>flow</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${v}_{mathrm{flow}}$</annotation>\u0000 </semantics></math>) and the ion thermal velocity (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mtext>ti</mtext>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${v}_{text{ti}}$</annotation>\u0000 </semantics></math>) and the electron thermal velocity (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mtext>te</mtext>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${v}_{text{te}}$</annotation>\u0000 </semantics></math>); low (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mtext>flow</mtext>\u0000 </msub>\u0000 <mo><</mo>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mtext>ti</mtext>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${v}_{text{flow}}< {v}_{text{ti}}$</annotation>\u0000 </semantics></math>), medium (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mtext>ti</mtext>\u0000 </msub>\u0000 <mo><</mo>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mtext>flow</mtext>\u0000 </msub>\u0000 <mo><</mo>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mtext>te</mtext>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${v}_{text{ti}}< {v}_{text{flow}}< {v}_{text{te}}$</annotation>\u0000 </semantics></math>), and high (<span></span><math>\u0000 <semantics>\u0000 ","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034302","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ulrich Taubenschuss, Ondřej Santolík, David Píša, Masafumi Imai, Georg Fischer, Siyuan Wu, Michiko W. Morooka, William S. Kurth
{"title":"A Global Map of Average Electron Densities in the Magnetosphere of Saturn","authors":"Ulrich Taubenschuss, Ondřej Santolík, David Píša, Masafumi Imai, Georg Fischer, Siyuan Wu, Michiko W. Morooka, William S. Kurth","doi":"10.1029/2025JA034007","DOIUrl":"https://doi.org/10.1029/2025JA034007","url":null,"abstract":"<p>Measurements from the Cassini Radio and Plasma Wave Science (RPWS) experiment obtained during the entire orbital phase of the Cassini mission around Saturn (13.2 years) are processed into a meridional map of plasma densities, comprising the innermost region of the ring ionosphere, the Enceladus plasma torus, and the outer magnetosphere, up to a dipole L-shell of 30. We combine data from RPWS wave observations, such as whistler-mode waves and upper hybrid electrostatic emissions, and from the RPWS Langmuir probe when operated in the proxy mode, providing an estimate for the spacecraft potential. In the region between dipole L-shells of 2.4 and 30, observed electron densities are described by an analytic model that fits two functions, one for the water group ions and one for the protons, to observed densities across latitude on each magnetic field line. The derived electron density profiles are then augmented by a model for the cold core electron temperature as a function of L-shell to obtain a meridional map of the electrostatic potential of the ambipolar electric field. The potential is extrapolated to the inner region of the rings, i.e., to below <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>=</mo>\u0000 <mn>2.4</mn>\u0000 </mrow>\u0000 <annotation> $L=2.4$</annotation>\u0000 </semantics></math>, to solve for the distribution of electron density in the ring ionosphere. A solution is based on a diffusive equilibrium model for the electrons and two ion species, and on observations from Cassini along the Saturn Orbit Insertion trajectory. A combination of analytic and diffusive equilibrium results finally yields an average global picture for the distribution of electron density in Saturn's magnetosphere.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. R. Smith, P. A. Delamere, C. E. Spitler, D. S. Ozturk, V. A. Palmer, J. Caggiano, K. Sorathia, A. Sciola, J. Z. Wang, R. J. Wilson, F. Bagenal
{"title":"The Role of Pedersen Conductance on the Dawn-Dusk Asymmetries in Jupiter's Magnetosphere-Ionosphere System: Model-Data Comparisons","authors":"A. R. Smith, P. A. Delamere, C. E. Spitler, D. S. Ozturk, V. A. Palmer, J. Caggiano, K. Sorathia, A. Sciola, J. Z. Wang, R. J. Wilson, F. Bagenal","doi":"10.1029/2025JA034189","DOIUrl":"https://doi.org/10.1029/2025JA034189","url":null,"abstract":"<p>Jupiter's rapidly rotating magnetosphere, with internal plasma sources such as the volcanic moon Io, provides a unique natural laboratory for studying internally driven planetary magnetospheres. Using the Grid Agnostic Magnetohydrodynamics for Extended Research Applications (GAMERA) model, we simulated Jupiter's magnetosphere with variable ionospheric Pedersen conductances, which is mainly responsible for energy dissipation between the ionosphere and magnetosphere though convection. We chose values ranging from 0.5 to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <msup>\u0000 <mn>0</mn>\u0000 <mn>6</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation> $1{0}^{6}$</annotation>\u0000 </semantics></math> mho <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>℧</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation> $(mho )$</annotation>\u0000 </semantics></math> to investigate the Pedersen conductance's role in controlling mid-magnetosphere region's dynamics and the closing of magnetosphere-ionosphere currents. Simulated density, temperature, and radial and azimuthal flows in the equator are compared with observations from the Jovian Auroral Distributions Experiment (JADE) on the Juno spacecraft. All simulation cases exhibit dawn-dusk asymmetries, in both the ionosphere and magnetosphere. The 0.5 <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>℧</mo>\u0000 </mrow>\u0000 <annotation> $mho $</annotation>\u0000 </semantics></math> case showed the best agreement with JADE observations, while the 1 <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>℧</mo>\u0000 </mrow>\u0000 <annotation> $mho $</annotation>\u0000 </semantics></math> case exhibited a magnetic topology more consistent with the auroral observations from the Hubble Space Telescope and Juno. These results enhance our understanding of Jupiter's magnetosphere-ionosphere coupling, provide context for observations, and inform the background parameters of future test particle simulations and data-model comparisons using the GAMERA model.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tom S. Stallard, Katie L. Knowles, Henrik Melin, Ruoyan Wang, Emma M. Thomas, Luke Moore, James O’Donoghue, Rosie E. Johnson, Steve Miller, John C. Coxon
{"title":"Dominant Trends in Jupiter's \u0000 \u0000 \u0000 \u0000 \u0000 H\u0000 3\u0000 +\u0000 \u0000 \u0000 \u0000 ${mathbf{H}}_{mathbf{3}}^{mathbf{+}}$\u0000 Northern Aurora: II. Magnetospheric Mapping","authors":"Tom S. Stallard, Katie L. Knowles, Henrik Melin, Ruoyan Wang, Emma M. Thomas, Luke Moore, James O’Donoghue, Rosie E. Johnson, Steve Miller, John C. Coxon","doi":"10.1029/2025JA034076","DOIUrl":"https://doi.org/10.1029/2025JA034076","url":null,"abstract":"<p>Jupiter's auroral regions have previously been defined by broad-scale auroral structures, but these are typically obscured by the wide array of temporal variability observed at timescales between minutes and days, making it difficult to understand the underlying magnetospheric biases driving these brightness differences. Here, we follow on from an initial study of Jupiter's aurora, again utilizing a data set of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>></mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${ >} $</annotation>\u0000 </semantics></math>13,000 <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>H</mi>\u0000 <mn>3</mn>\u0000 <mo>+</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathrm{H}}_{3}^{+}$</annotation>\u0000 </semantics></math> images of Jupiter mapped into latitude, longitude and local time, smoothed over tens of hours of integration and many days of observing. Having removed correlations between brightness and both magnetic field and planetary local time identified in the first study, we examine morphological changes in emission with both planetary and magnetic local time. We reveal that the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>H</mi>\u0000 <mn>3</mn>\u0000 <mo>+</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> ${mathrm{H}}_{3}^{+}$</annotation>\u0000 </semantics></math> main auroral emission is enhanced by a factor of three in the region mapping into the dusk magnetosphere. An additional strong auroral darkening is observed near noon, aligned with previous ultraviolet observations of an auroral discontinuity in this region, though this rotates duskward slightly in magnetic local time, as the ionospheric source mapping to this region moves duskward. The polar aurora contrasts with this strongly, showing brightness enhancement when the auroral pole points toward the dawn and dusk limbs. It also shows that the Dark region is fixed in local time, close to the dawnward edge of the polar region, while the Swirl region appears to match well with predictions from recent MHD models when the magnetic pole points toward dawn, but changes significantly at other magnetic pole directions.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}