利用递归神经网络的桥接原位卫星测量和磁重联模拟

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Cara L. Waters, Jonathan P. Eastwood, Naïs Fargette, David L. Newman, Martin V. Goldman, Martin O. Archer, Harry C. Lewis, Harley M. Kelly
{"title":"利用递归神经网络的桥接原位卫星测量和磁重联模拟","authors":"Cara L. Waters,&nbsp;Jonathan P. Eastwood,&nbsp;Naïs Fargette,&nbsp;David L. Newman,&nbsp;Martin V. Goldman,&nbsp;Martin O. Archer,&nbsp;Harry C. Lewis,&nbsp;Harley M. Kelly","doi":"10.1029/2025JA034383","DOIUrl":null,"url":null,"abstract":"<p>Magnetic reconnection is inherently structured, with distinct spatial regions such as inflows, outflows, and separatrices playing key roles in energy conversion and particle transport. While in situ spacecraft measurements provide detailed local information, determining where a spacecraft lies within the global reconnection geometry remains a major challenge. Proxy-based methods are often ambiguous, while full reconstructions require strong assumptions and are difficult to apply systematically across events. Here, we present a method that bridges these approaches by using machine learning to infer global structural context from local measurements. We first apply <i>k</i>-means clustering to a 2.5-D particle-in-cell simulation to identify six characteristic symmetric reconnection regions. A recurrent neural network (RNN) is then trained on spacecraft-like trajectories through the simulation to classify time series data into these regions. When applied to Magnetospheric Multiscale (MMS) observations of magnetotail reconnection, this method successfully identifies regional transitions, including inflow, outflow, and separatrix crossings, in agreement with previous reconstructions where available. The approach provides a practical, scalable, and automated framework for determining spatial context in reconnection events without requiring full geometric reconstruction, enabling large-scale and efficient statistical studies of reconnection dynamics across multiple events.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034383","citationCount":"0","resultStr":"{\"title\":\"Bridging in Situ Satellite Measurements and Simulations of Magnetic Reconnection Using Recurrent Neural Networks\",\"authors\":\"Cara L. Waters,&nbsp;Jonathan P. Eastwood,&nbsp;Naïs Fargette,&nbsp;David L. Newman,&nbsp;Martin V. Goldman,&nbsp;Martin O. Archer,&nbsp;Harry C. Lewis,&nbsp;Harley M. Kelly\",\"doi\":\"10.1029/2025JA034383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetic reconnection is inherently structured, with distinct spatial regions such as inflows, outflows, and separatrices playing key roles in energy conversion and particle transport. While in situ spacecraft measurements provide detailed local information, determining where a spacecraft lies within the global reconnection geometry remains a major challenge. Proxy-based methods are often ambiguous, while full reconstructions require strong assumptions and are difficult to apply systematically across events. Here, we present a method that bridges these approaches by using machine learning to infer global structural context from local measurements. We first apply <i>k</i>-means clustering to a 2.5-D particle-in-cell simulation to identify six characteristic symmetric reconnection regions. A recurrent neural network (RNN) is then trained on spacecraft-like trajectories through the simulation to classify time series data into these regions. When applied to Magnetospheric Multiscale (MMS) observations of magnetotail reconnection, this method successfully identifies regional transitions, including inflow, outflow, and separatrix crossings, in agreement with previous reconstructions where available. The approach provides a practical, scalable, and automated framework for determining spatial context in reconnection events without requiring full geometric reconstruction, enabling large-scale and efficient statistical studies of reconnection dynamics across multiple events.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034383\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034383\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034383","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

磁重联具有固有的结构,具有不同的空间区域,如流入、流出和分离,在能量转换和粒子输运中起着关键作用。虽然航天器的原位测量提供了详细的局部信息,但确定航天器在全球重联几何结构中的位置仍然是一个主要挑战。基于代理的方法通常是模糊的,而完全重建需要强有力的假设,并且难以系统地跨事件应用。在这里,我们提出了一种方法,通过使用机器学习从局部测量推断全局结构背景,将这些方法连接起来。我们首先将k-means聚类应用于2.5 d细胞内粒子模拟,以识别六个特征对称重连接区域。然后在类似航天器的轨迹上训练递归神经网络(RNN),通过模拟将时间序列数据分类到这些区域。当应用于磁尾重联的磁层多尺度(MMS)观测时,该方法成功地识别了区域转换,包括流入、流出和分离矩阵交叉,与之前的重建结果一致。该方法提供了一个实用的、可扩展的、自动化的框架,用于确定重连事件中的空间背景,而不需要完整的几何重建,从而实现了跨多个事件的重连动态的大规模和有效的统计研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging in Situ Satellite Measurements and Simulations of Magnetic Reconnection Using Recurrent Neural Networks

Bridging in Situ Satellite Measurements and Simulations of Magnetic Reconnection Using Recurrent Neural Networks

Magnetic reconnection is inherently structured, with distinct spatial regions such as inflows, outflows, and separatrices playing key roles in energy conversion and particle transport. While in situ spacecraft measurements provide detailed local information, determining where a spacecraft lies within the global reconnection geometry remains a major challenge. Proxy-based methods are often ambiguous, while full reconstructions require strong assumptions and are difficult to apply systematically across events. Here, we present a method that bridges these approaches by using machine learning to infer global structural context from local measurements. We first apply k-means clustering to a 2.5-D particle-in-cell simulation to identify six characteristic symmetric reconnection regions. A recurrent neural network (RNN) is then trained on spacecraft-like trajectories through the simulation to classify time series data into these regions. When applied to Magnetospheric Multiscale (MMS) observations of magnetotail reconnection, this method successfully identifies regional transitions, including inflow, outflow, and separatrix crossings, in agreement with previous reconstructions where available. The approach provides a practical, scalable, and automated framework for determining spatial context in reconnection events without requiring full geometric reconstruction, enabling large-scale and efficient statistical studies of reconnection dynamics across multiple events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信