{"title":"Electrostatic Charging of Lunar Cavities Governed by the Flow-to-Thermal Speed Ratio: 3D PIC Simulations and a Free-Fall Model","authors":"J. Nakazono, Y. Miyake, W. J. Miloch","doi":"10.1029/2025JA034302","DOIUrl":null,"url":null,"abstract":"<p>We use Particle-In-Cell (PIC) simulations to investigate the charging characteristics inside deep cavities on the lunar surface under the solar wind plasma conditions. Specifically, we systematically study the dependence of the cavity bottom potential on plasma flow velocity and cavity aspect ratio. In light of prior results indicating that the charging characteristics are predominantly determined by the cavity aspect ratio, the present analysis employs a rectangular shape for the cavity with a width smaller than the local Debye length. Three flow regimes are then defined according to the ordering among the bulk flow velocity (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mi>flow</mi>\n </msub>\n </mrow>\n <annotation> ${v}_{\\mathrm{flow}}$</annotation>\n </semantics></math>) and the ion thermal velocity (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mtext>ti</mtext>\n </msub>\n </mrow>\n <annotation> ${v}_{\\text{ti}}$</annotation>\n </semantics></math>) and the electron thermal velocity (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mtext>te</mtext>\n </msub>\n </mrow>\n <annotation> ${v}_{\\text{te}}$</annotation>\n </semantics></math>); low (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mtext>flow</mtext>\n </msub>\n <mo><</mo>\n <msub>\n <mi>v</mi>\n <mtext>ti</mtext>\n </msub>\n </mrow>\n <annotation> ${v}_{\\text{flow}}< {v}_{\\text{ti}}$</annotation>\n </semantics></math>), medium (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mtext>ti</mtext>\n </msub>\n <mo><</mo>\n <msub>\n <mi>v</mi>\n <mtext>flow</mtext>\n </msub>\n <mo><</mo>\n <msub>\n <mi>v</mi>\n <mtext>te</mtext>\n </msub>\n </mrow>\n <annotation> ${v}_{\\text{ti}}< {v}_{\\text{flow}}< {v}_{\\text{te}}$</annotation>\n </semantics></math>), and high (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mtext>te</mtext>\n </msub>\n <mo><</mo>\n <msub>\n <mi>v</mi>\n <mtext>flow</mtext>\n </msub>\n </mrow>\n <annotation> ${v}_{\\text{te}}< {v}_{\\text{flow}}$</annotation>\n </semantics></math>). Accordingly, the charging characteristics differ across the regimes. In the low-flow velocity regime, the influx of electrons dominates over the influx of ions, resulting in the development of a negative potential at the bottom. In the medium-flow velocity regime, most electrons are lost to the side walls, while ions tend to reach the bottom. This results in the development of a positive potential at the cavity bottom. In the high-flow velocity regime, the influx of ions saturates while the influx of electrons becomes comparable to that of ions, resulting in the bottom potential converging to zero. These results provide significant insight into the electrostatic environment related to the complex morphology of the lunar surface, formed as a result of interactions with the space plasma.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JA034302","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034302","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use Particle-In-Cell (PIC) simulations to investigate the charging characteristics inside deep cavities on the lunar surface under the solar wind plasma conditions. Specifically, we systematically study the dependence of the cavity bottom potential on plasma flow velocity and cavity aspect ratio. In light of prior results indicating that the charging characteristics are predominantly determined by the cavity aspect ratio, the present analysis employs a rectangular shape for the cavity with a width smaller than the local Debye length. Three flow regimes are then defined according to the ordering among the bulk flow velocity () and the ion thermal velocity () and the electron thermal velocity (); low (), medium (), and high (). Accordingly, the charging characteristics differ across the regimes. In the low-flow velocity regime, the influx of electrons dominates over the influx of ions, resulting in the development of a negative potential at the bottom. In the medium-flow velocity regime, most electrons are lost to the side walls, while ions tend to reach the bottom. This results in the development of a positive potential at the cavity bottom. In the high-flow velocity regime, the influx of ions saturates while the influx of electrons becomes comparable to that of ions, resulting in the bottom potential converging to zero. These results provide significant insight into the electrostatic environment related to the complex morphology of the lunar surface, formed as a result of interactions with the space plasma.
利用粒子池(PIC)模拟研究了太阳风等离子体作用下月球表面深层空腔内的充电特性。具体地说,我们系统地研究了腔底电位与等离子体流速和腔长比的关系。鉴于先前的结果表明充电特性主要由空腔长径比决定,本分析采用矩形形状的空腔,其宽度小于局部德拜长度。然后根据体流速度(v flow ${v}_{\ maththrm {flow}}$)和离子热速度(v ti)之间的顺序定义了三种流型${v}_{\text{ti}}$)和电子热速度(v te ${v}_{\text{te}}$);低(v flow < v ti ${v}_{\text{flow}}< {v}_{\text{ti}}$),介质(v ti < v flow < v the ${v}_{\text{ti}}< {v}_{\text{flow}}< {v}_{\text{te}}$),高(v the < v flow ${v}_{\text{te}}< {v}_{\text{flow}}$)。因此,不同制度的充电特性不同。在低流速状态下,电子的流入比离子的流入占优势,导致底部形成负电位。在中流速度下,大多数电子会流失到侧壁,而离子则会到达底部。这导致在空腔底部形成正电位。在高流速区,离子的流入达到饱和,而电子的流入与离子的流入相当,导致底部电位收敛到零。这些结果对与月球表面复杂形态相关的静电环境提供了重要的见解,这些静电环境是与空间等离子体相互作用形成的。