Journal of Geophysical Research: Earth Surface最新文献

筛选
英文 中文
Washout Versus Washover: Distinct Trajectories of Barrier Reshaping 冲刷与冲刷:屏障重塑的不同轨迹
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-04-12 DOI: 10.1029/2024JF008047
Joshua D. Himmelstein, Antonio B. Rodriguez
{"title":"Washout Versus Washover: Distinct Trajectories of Barrier Reshaping","authors":"Joshua D. Himmelstein,&nbsp;Antonio B. Rodriguez","doi":"10.1029/2024JF008047","DOIUrl":"https://doi.org/10.1029/2024JF008047","url":null,"abstract":"<p>Barrier islands are dynamic coastal landforms that can migrate landward from the press of sea-level rise and the pulse of storms. Previous work on barriers largely focuses on landward sediment mobilization, particularly through overwash, while the role of outwash—where sediment is transported seaward—remains underexamined. There exists a lack of direct comparisons between the processes that restore sediment volume and the timescales of recovery following outwash and overwash events. Here, we used high-resolution mapping and in situ and modeled water levels to quantify morphologic change and its relation to inundation at three contrasting sites. Our results demonstrate that outwash can remain a net erosive scar for years after formation, while overwash magnitude, frequency, and thus persistence vary largely depending on the width and elevational resistance of the barrier. When elevational resistance to overtopping is low, we show that intermediate high-water events can contribute as much sediment to island overwash as larger named storms and that these processes are key for outwash recovery. We find that modeled total water level correlates positively with volume change, while discrepancies between modeled and observed water levels implicate runup overwash as the dominant mode of transport. Together, we use these data to suggest a differentiation between overwash and outwash processes and their resulting morphologies in studies that aim to predict the impact of storms on barrier island transgression rates and broader ecological function.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Regression for Space-Time Prediction of Precipitation-Induced Shallow Landslides in South Tyrol, Italy 降水诱发的意大利南蒂罗尔浅层滑坡时空预报的功能回归
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-04-11 DOI: 10.1029/2024JF008219
Mateo Moreno, Luigi Lombardo, Stefan Steger, Lotte de Vugt, Thomas Zieher, Alice Crespi, Francesco Marra, Cees van Westen, Thomas Opitz
{"title":"Functional Regression for Space-Time Prediction of Precipitation-Induced Shallow Landslides in South Tyrol, Italy","authors":"Mateo Moreno,&nbsp;Luigi Lombardo,&nbsp;Stefan Steger,&nbsp;Lotte de Vugt,&nbsp;Thomas Zieher,&nbsp;Alice Crespi,&nbsp;Francesco Marra,&nbsp;Cees van Westen,&nbsp;Thomas Opitz","doi":"10.1029/2024JF008219","DOIUrl":"https://doi.org/10.1029/2024JF008219","url":null,"abstract":"<p>Landslides are geomorphic hazards in mountainous terrains across the globe, driven by a complex interplay of static and dynamic controls. Data-driven approaches have been employed to assess landslide occurrence at regional scales by analyzing the spatial aspects and time-varying conditions separately. However, the joint assessment of landslides in space and time remains challenging. This study aims to predict the occurrence of precipitation-induced shallow landslides in space and time within the Italian province of South Tyrol (7,400 km<sup>2</sup>). We introduce a functional predictor framework where precipitation is represented as a continuous time series, in contrast to conventional approaches that treat precipitation as a scalar predictor. Using hourly precipitation data and past landslide occurrences from 2012 to 2021, we implemented a functional generalized additive model to derive statistical relationships between landslide occurrence, various static scalar factors, and the preceding hourly precipitation as a functional predictor. We evaluated the resulting predictions through several cross-validation routines, yielding performance scores frequently exceeding 0.90. To demonstrate the model predictive capabilities, we performed a hindcast for a storm event in the Passeier Valley on 4–5 August 2016, capturing the observed landslide locations and illustrating the hourly evolution of the predicted probabilities. Compared to standard early warning approaches, this framework eliminates the need to predefine fixed time windows for precipitation aggregation while inherently accounting for lagged effects. By integrating static and dynamic controls, this research advances the prediction of landslides in space and time for large areas, addressing seasonal effects and underlying data limitations.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF008219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143818585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying Hydraulically Distinct Floodplain Types From High Resolution Topography With Implications for Broad-Scale Flood Routing 从高分辨率地形中识别不同的洪泛区类型及其对大范围洪水路径的影响
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-04-09 DOI: 10.1029/2024JF007984
Rebecca M. Diehl, Kenneth S. Lawson, Kristen L. Underwood, Julianne E. Scamardo, Patrick J. Clemins, Beverley C. Wemple
{"title":"Identifying Hydraulically Distinct Floodplain Types From High Resolution Topography With Implications for Broad-Scale Flood Routing","authors":"Rebecca M. Diehl,&nbsp;Kenneth S. Lawson,&nbsp;Kristen L. Underwood,&nbsp;Julianne E. Scamardo,&nbsp;Patrick J. Clemins,&nbsp;Beverley C. Wemple","doi":"10.1029/2024JF007984","DOIUrl":"https://doi.org/10.1029/2024JF007984","url":null,"abstract":"<p>Floodplains can significantly impact the routing of flood waves across the landscape, however, their representation in broad-scale water resource and flood prediction models is limited. To identify hydraulically relevant floodplains at scale, we developed a workflow to automatically extract reach-averaged topographic features from high resolution (1-m) LiDAR-derived topographic data. These features were identified from departures in the relationship between hydraulic geometry and flood stage and hypothesized to define and characterize a zone within the floodplain that disproportionately dissipates energy and attenuates floodwaters, called the Energy Dissipation Zone. We applied the workflow in the topographically diverse Lake Champlain Basin in Vermont, USA, and used a K-medoids analysis to cluster reaches into distinct feature-based types that were expected to uniquely route hydrographs. In total, we identified eight clusters of reach types: two that were pre-sorted because of the presence of a waterbody or limited floodplain access and six that reflected variability in reach-averaged mesoscale floodplain features that describe the size and shape of the Energy Dissipation Zone. Reach types had distinct impacts on the attenuation of synthetically derived hydrographs, evaluated using the Muskingum-Cunge method. From these clusters, we propose a Hydraulic Floodplain Classification, which is comparable to other geomorphically defined systems but novel in its focus on the landscape potential to influence flood routing. The automated workflow is repeatable and has the potential to improve the functionality of continental floodplain mapping efforts. Identification of hydraulically effective zones has implications for improved watershed management to meet flood resiliency goals and to improve flood predictions and warnings.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007984","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Rise and Fall of Marpha Lake, a Late Quaternary Dammed Lake in the Himalayan Rain-Shadow With Implications to Landscape Evolution and Sediment Dynamics 喜马拉雅雨影区晚第四纪堰塞湖马尔法湖的兴衰及其景观演化和泥沙动力学意义
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-04-02 DOI: 10.1029/2024JF007959
P. Chahal, A. Matmon, N. Porat, K. N. Paudayal, Y. Goldsmith
{"title":"The Rise and Fall of Marpha Lake, a Late Quaternary Dammed Lake in the Himalayan Rain-Shadow With Implications to Landscape Evolution and Sediment Dynamics","authors":"P. Chahal,&nbsp;A. Matmon,&nbsp;N. Porat,&nbsp;K. N. Paudayal,&nbsp;Y. Goldsmith","doi":"10.1029/2024JF007959","DOIUrl":"https://doi.org/10.1029/2024JF007959","url":null,"abstract":"<p>Understanding landscape evolution history and sedimentary dynamics in high mountainous regions is tampered by rapid erosion of the sedimentary archives. Naturally dammed lakes provide unique snapshots of these processes and enable evaluating these processes under climatic conditions different from the present. Marpha Lake, in the Himalayan rain-shadow of the upper Kali Gandaki, central Nepal, with its ∼450 m thick lacustrine sequence provides a rare opportunity to study these processes. Optically Stimulated Luminescence (OSL) of quartz and feldspars was used to date the full sequence of filling, breaching and sediment evacuation of the lake. The results show that the lake initiated at ∼120 ka and sediment accumulated until ∼80 ka, corresponding to the intense monsoon period of Marine Isotope Stage (MIS) 5. The calculated minimum catchment erosion rate during the lake filling is typical of modern erosion rates of the Himalayan rain shadow (∼150 mm/ka). The lake was breached at ∼30 ka and the majority of sediments were evacuated within 10 kyr. Between 80 and 30 ka, there was little sedimentation, corresponding to the Last Glacial period (MIS 2–4) associated with weaker Indian monsoon and possible ice coverage of the lake's drainage basin down to the elevation of the lake. Breaching of the dam may have been the result of ice pressure from the lake and/or ice build-up in the pores within the dam. Thus, the sediments of Marpha Lake provide a fascinating archive for understanding how the interplay between mass movement and climate shaped the Himalayan rain shadow morphology during the Late Quaternary.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007959","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Climate Change on Bimodal Cross-Shore Distributions of the Longshore Sediment Transport Rate and Current Velocity on a Dissipative Sandy Beach 气候变化对耗散性沙滩海岸输沙速率和流速双峰分布的影响
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-04-01 DOI: 10.1029/2024JF007931
Y. Kuriyama, M. Banno
{"title":"Influence of Climate Change on Bimodal Cross-Shore Distributions of the Longshore Sediment Transport Rate and Current Velocity on a Dissipative Sandy Beach","authors":"Y. Kuriyama,&nbsp;M. Banno","doi":"10.1029/2024JF007931","DOIUrl":"https://doi.org/10.1029/2024JF007931","url":null,"abstract":"<p>Changes in waves and wind caused by climate change would induce changes in the cross-shore distribution of the longshore sediment transport rate, which would lead to morphological changes on the updrift and downdrift sides of coastal structures. Therefore, the impacts of climate change on the cross-shore distributions of the longshore sediment transport rate and the longshore current velocity, which induces sediment transport, were examined at a sandy beach in Japan using a one-dimensional numerical model and 9-year wave and wind data simulated at 2-hr intervals for the present and future climates. Both the present-climate distributions had northward and southward predominant values near the shore and offshore, respectively, as a result of the combination of the southerly and northerly waves. Under the RCP8.5 scenario, the distributions shifted southward in the nearshore region, even though the mean wave direction did not change. This occurred because the significant wave height of the southerly waves decreased more than that of the northerly waves under this scenario. In the offshore region, northward longshore sediment transport became predominant because the number of large southerly waves increased. The results obtained using the peak wave directions differed from those obtained using the mean wave directions. There was a significant shift in the distributions to the south, and the bimodal distributions became unimodal. Future changes in the distributions can be estimated using 1-day interval data instead of 2-hr interval data with an error of 30% in the nearshore region.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Reassessment of the Role of Atmospheric and Oceanic Forcing on Ice Dynamics at Jakobshavn Isbræ (Sermeq Kujalleq), Ilulissat Icefjord 大气和海洋强迫对伊卢利萨特冰湾Jakobshavn Isbræ (Sermeq Kujalleq)冰动力的影响
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-03-30 DOI: 10.1029/2024JF008104
H. J. Picton, P. W. Nienow, D. A. Slater, T. R. Chudley
{"title":"A Reassessment of the Role of Atmospheric and Oceanic Forcing on Ice Dynamics at Jakobshavn Isbræ (Sermeq Kujalleq), Ilulissat Icefjord","authors":"H. J. Picton,&nbsp;P. W. Nienow,&nbsp;D. A. Slater,&nbsp;T. R. Chudley","doi":"10.1029/2024JF008104","DOIUrl":"https://doi.org/10.1029/2024JF008104","url":null,"abstract":"<p>Jakobshavn Isbræ (<i>Sermeq Kujalleq</i>) has been the largest single contributor to mass loss from the Greenland Ice Sheet over the past three decades. Previous research emphasizes the dominant role of oceanic forcing, with the recent advance, deceleration and thickening of Jakobshavn attributed to reduced ocean temperatures. Here, we use satellite imagery and remotely sensed data sets of ice surface velocity, ice surface elevation and ice discharge to extend observations of ice dynamics at Jakobshavn Isbræ between 2018 and 2023. We then use in situ oceanic and meteorological data, in combination with modeled estimates of surface runoff, to explore the potential role of climatic forcing over this 5-year period. Our results show that Jakobshavn began to re-accelerate in 2018, with mean annual near-terminus velocity increasing by 49% between 2018 and 2021. The onset of re-acceleration occurred prior to the arrival of warmer water, and was likely facilitated by the near-terminus being close to flotation and thus highly sensitive to reductions in effective pressure. Such reductions likely resulted from ice surface lowering, driven by both negative surface mass balance and dynamic thinning. During winter 2020/2021, ice velocities remained elevated, with sustained thinning and iceberg calving observed. This unusual behavior corresponded with a significant decrease in rigid mélange extent, likely driven by increased ocean temperatures observed in Disko Bay and Ilulissat Icefjord. This study thus further emphasizes the complexity of climatic forcing at the ice-ocean interface, highlighting that both oceanic <i>and</i> atmospheric forcing must be considered when projecting the future behavior of marine-terminating outlet glaciers.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF008104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty Reduction for Subaerial Landslide-Tsunami Hazards 减少陆上滑坡-海啸灾害的不确定性
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-03-30 DOI: 10.1029/2024JF007906
Katherine R. Barnhart, David L. George, Andrew L. Collins, Lauren N. Schaefer, Dennis M. Staley
{"title":"Uncertainty Reduction for Subaerial Landslide-Tsunami Hazards","authors":"Katherine R. Barnhart,&nbsp;David L. George,&nbsp;Andrew L. Collins,&nbsp;Lauren N. Schaefer,&nbsp;Dennis M. Staley","doi":"10.1029/2024JF007906","DOIUrl":"https://doi.org/10.1029/2024JF007906","url":null,"abstract":"<p>Subaerial rock slopes may generate a tsunami by rapidly moving into the water. Large uncertainty in landslide characteristics propagates into large uncertainty in tsunami hazard, making hazard assessment more difficult for land and emergency managers. Once a potentially tsunamigenic landslide is identified, it may not be clear which landslide characteristics contribute most significantly to uncertainty in the tsunami hazard. Our aim is to document the relative worth of different landslide characteristics (e.g., size, material properties) for reducing uncertainty in landslide-tsunami hazard assessments. Isolating the relative importance of specific landslide characteristics may inform prioritization of data collection and improve efficiency in understanding hazard. To accomplish this, we generated a set of 288 landslide-tsunami simulations in which we systematically varied the size and material properties of possible failure extents at the Barry Arm landslide complex in northwestern Prince William Sound, Alaska, USA. We find that for landslides smaller than the receiving waterbody, the landslide volume has the strongest effect on resulting wave characteristics and thus the highest leverage on reducing uncertainty in tsunami hazard. In contrast, for landslides substantially larger than the waterbody, the duration of rapid movement of the landslide has the highest leverage. Based on our results, we propose a classification scheme for subaerial landslides based on the relative size of the landslide and waterbody. Additionally, our results support the generation of a tsunami height transfer function between existing tide gages and a nearby coastal city. These results have direct implications for the practice of operational early warning.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007906","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elemental and Li Isotopic Investigation of a Proglacial River System: Insights to Modern Chemical Weathering Processes 前冰期河流系统元素和Li同位素研究:对现代化学风化过程的启示
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-03-27 DOI: 10.1029/2024JF007856
Venkata Sailaja Pappala, Carli A. Arendt, Xiao-Ming Liu
{"title":"Elemental and Li Isotopic Investigation of a Proglacial River System: Insights to Modern Chemical Weathering Processes","authors":"Venkata Sailaja Pappala,&nbsp;Carli A. Arendt,&nbsp;Xiao-Ming Liu","doi":"10.1029/2024JF007856","DOIUrl":"https://doi.org/10.1029/2024JF007856","url":null,"abstract":"<p>Dissolved and suspended sediment samples were collected from the 121 km-long proglacial Matanuska River and five associated tributaries in Southcentral Alaska (USA), in July 2019. Li elemental and isotopic (δ<sup>7</sup>Li) composition of dissolved load from proglacial river water samples and XRD analyses of the accompanying suspended sediments were measured to better understand the processes controlling Li isotopic fractionation during glacial weathering. The δ<sup>7</sup>Li<sub>diss</sub> of the Matanuska River system ranges from +6.1 to +18.2‰ (average = +14.6‰), which is lower than that of the associated tributary samples (average = +21.0‰). A weak negative correlation between δ<sup>7</sup>Li<sub>diss</sub> and Li/Na* ratios is observed, indicating that fluid residence time is not the only control for the observed δ<sup>7</sup>Li<sub>diss</sub> variations in this study. Equilibrium-type fractionation controls the observed δ<sup>7</sup>Li<sub>diss</sub> variability of the Matanuska River system with a calculated fractionation factor (<i>α</i>) of 0.988. In contrast, Rayleigh-type fractionation regulates the δ<sup>7</sup>Li<sub>diss</sub> variability in tributaries, where <i>α</i> values range between 0.990 and 0.996. XRD analyses of suspended sediments show the presence of secondary clay mineral phases such as chlorite, illite, smectite, and Fe-oxyhydroxides group minerals, which further supports the estimated <i>α</i> values. There is no correlation between δ<sup>7</sup>Li<sub>diss</sub> values and water temperature, pH, ionic strength of the solution, or topography, implying that these factors have limited influence on the evolution of δ<sup>7</sup>Li<sub>diss</sub> along the Matanuska River transect. Overall, our results suggest that isotopic fractionation via adsorption of <sup>6</sup>Li onto secondary mineral phases formed during glacial weathering likely explains the observed δ<sup>7</sup>Li<sub>diss</sub> variability in this study.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007856","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boreal Forest Cover Delays Thermokarst Onset in Central Siberia's Yedoma Deposits 北方森林覆盖延迟了西伯利亚中部Yedoma矿床热岩溶的发生
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-03-27 DOI: 10.1029/2024JF007873
S. M. Stuenzi, J. Boike, S. Westermann, M. Langer
{"title":"Boreal Forest Cover Delays Thermokarst Onset in Central Siberia's Yedoma Deposits","authors":"S. M. Stuenzi,&nbsp;J. Boike,&nbsp;S. Westermann,&nbsp;M. Langer","doi":"10.1029/2024JF007873","DOIUrl":"https://doi.org/10.1029/2024JF007873","url":null,"abstract":"<p>Boreal forests, covering more than half of the world's permafrost, are essential for maintaining permafrost stability. However, climate change and forest shifts are threatening the delicate balance in the thermal equilibrium between the atmosphere, vegetation, and permafrost. We focus on Central Yakutia's ice-rich boreal regions, specifically two sites located in Spasskaya-Pad and Churapcha, to investigate the interplay of hydrothermal and climatic conditions that induce thermokarst. We employ a numerical permafrost model (CryoGrid), with a canopy model, and features for excess ground ice, lateral water flow and lake formation, to simulate the underlying physical processes under two forcing scenarios until 2060. The results reveal that forest delays the onset of thermokarst and ground ice melting by 3–18 years, depending on ice depth, climate forcing, and local conditions. Our simulations additionally reveal that a canopy slows excess ice melt by up to 7 years compared to bare ground simulations. Furthermore, in exceptionally warm and wet years, thermokarst initiation occurred rapidly in the bare ground simulations. In contrast, the canopy buffered against these conditions, suggesting that canopies might mitigate the impacts of small temperature and precipitation anomalies. This research highlights the critical role of forests in shaping the trajectory of thermokarst-related landscape transformations in ice-rich boreal permafrost regions. With the study region warming faster than average, forest cover transformations could significantly alter the hydrological balance. By integrating thermodynamics, hydrology, and ecology, our findings underscore the importance of forests in delaying thermokarst initiation and slowing ground ice melt, ultimately stabilizing permafrost ecosystems.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Future Coastal Tundra Loss Due To Compounding Environmental Changes in Alaska 未来阿拉斯加沿海冻土带的损失是由于复杂的环境变化
IF 3.5 2区 地球科学
Journal of Geophysical Research: Earth Surface Pub Date : 2025-03-26 DOI: 10.1029/2024JF008076
D. L. Anderson, N. Cohn
{"title":"Future Coastal Tundra Loss Due To Compounding Environmental Changes in Alaska","authors":"D. L. Anderson,&nbsp;N. Cohn","doi":"10.1029/2024JF008076","DOIUrl":"https://doi.org/10.1029/2024JF008076","url":null,"abstract":"<p>Anthropogenic climate change is amplified in the Arctic, where less sea ice enables more energetic wave climates while higher air and soil temperatures increase tundra erodibility. These compounding environmental changes are likely to exacerbate retreat of coastal tundra yet remain poorly constrained on timescales relevant to storm wave impacts. A stochastic weather generator is used to create 1,000 synthetic hourly time series of waves, water levels, offshore sea ice concentration, and air temperatures that are used as forcing for an efficient coastal tundra model applied to conditions at Point Hope, Alaska. The ensemble set of morphological change simulations provides a probabilistic perspective on the range of tundra retreats and the relative effects of each environmental forcing. Ensembles show that as the depth of the erodible layer increases, the style of tundra retreat shifts from a more consistent steady recession to intermittent events with large magnitudes and a factor 2 range in outcomes. Exploratory model scenarios highlight that shallower thaw depths narrows the range of retreats and reduces individual extreme events, but a dynamic feedback between beach slopes, wave runup, and thermally limited erosion volumes ultimately increases the number of storm events associated with retreat. The minimum tundra retreat is governed by background shoreline change and the specifics of the topographic profile are also shown to dominate underlying changes in the future wave climate statistics and open water season. As the Arctic continues to warm, the change in retreat style across the Arctic coastal plain will have significant ramifications for coastal resilience.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 4","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF008076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信