Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn
{"title":"Internal heating profiles for which downward conduction is impossible","authors":"Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn","doi":"10.1017/jfm.2024.590","DOIUrl":"https://doi.org/10.1017/jfm.2024.590","url":null,"abstract":"We consider an internally heated fluid between parallel plates with fixed thermal fluxes. For a large class of heat sources that vary in the direction of gravity, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline1.png\"/> <jats:tex-math>$smash { smash {{langle {delta T} rangle _h}} } geq sigma R^{-1/3} - mu$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline2.png\"/> <jats:tex-math>$smash { smash {{langle {delta T} rangle _h}} }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the average temperature difference between the bottom and top plates, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline3.png\"/> <jats:tex-math>$R$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a ‘flux’ Rayleigh number and the constants <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline4.png\"/> <jats:tex-math>$sigma,mu >0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depend on the geometric properties of the internal heating. This result implies that mean downward conduction (for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline5.png\"/> <jats:tex-math>$smash { smash {{langle {delta T} rangle _h}} }< 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) is impossible for a range of Rayleigh numbers smaller than a critical value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline6.png\"/> <jats:tex-math>$R_0:=(sigma /mu )^{3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The bound demonstrates that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline7.png\"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depends on the heating distribution and can be made arbitrarily large by concentrating the heating near the bottom plate. However, for any given fixed heating profile of the class we consider, the corresponding value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline8.png\"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is always finite. This points to a fundamental differenc","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"16 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subcritical transitional flow in two-dimensional plane Poiseuille flow","authors":"Z. Huang, R. Gao, Y.Y. Gao, G. Xi","doi":"10.1017/jfm.2024.752","DOIUrl":"https://doi.org/10.1017/jfm.2024.752","url":null,"abstract":"Recently, subcritical transition to turbulence in the quasi-two-dimensional (quasi-2-D) shear flow with strong linear friction (Camobreco <jats:italic>et al.</jats:italic>, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 963, 2023, R2) has been demonstrated by the 2-D mechanism at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline1.png\"/> <jats:tex-math>$Re = 71,211$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the nonlinear Tollmien–Schlichting (TS) waves related to the edge state were approached independently of initial optimal disturbances. For 2-D plane Poiseuille flow, transition to the fully developed turbulence requires that the Reynolds number is several times larger than the critical Reynolds number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline2.png\"/> <jats:tex-math>$Re_c$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (Markeviciute & Kerswell, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 917, 2021, A57). In this paper, we observed the subcritical transitional flow in 2-D plane Poiseuille flow driven by the nonlinear TS waves by both linear and nonlinear optimal disturbances (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline3.png\"/> <jats:tex-math>$Re < Re_c$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with different quantitative edge states. The nonlinear optimal disturbances could trigger the sustained subcritical transitional flow for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline4.png\"/> <jats:tex-math>$Re geqslant 2400$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The initial energy for nonlinear optimal disturbance is more efficient than the linear optimal disturbance in reaching the subcritical transitional flow for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline5.png\"/> <jats:tex-math>$2400 leqslant Re leqslant 5000$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, the initial energy of linear optimal disturbance is larger than the energy of its edge state. The nonlinear TS waves along the edge state are formed by the nonlinear optimal disturbances to trigger transitional flow, which agrees well with the main conclusions of Camobreco <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 963, 2023, R2), while the required <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xli","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"44 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stratified Resistive Tearing Instability","authors":"Scott J. Hopper, Toby S. Wood, Paul J. Bushby","doi":"10.1017/jfm.2024.621","DOIUrl":"https://doi.org/10.1017/jfm.2024.621","url":null,"abstract":"Resistive tearing instabilities are common in fluids that are highly electrically conductive and carry strong currents. We determine the effect of stable stratification on the tearing instability under the Boussinesq approximation. Our results generalise previous work that considered only specific parameter regimes, and we show that the length scale of the fastest-growing mode depends non-monotonically on the stratification strength. We confirm our analytical results by solving the linearised equations numerically, and we discuss whether the instability could operate in the solar tachocline.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"72 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular kinetic modelling of non-equilibrium evaporative flows","authors":"Shaokang Li, Wei Su, Baochao Shan, Zuoxu Li, Livio Gibelli, Yonghao Zhang","doi":"10.1017/jfm.2024.605","DOIUrl":"https://doi.org/10.1017/jfm.2024.605","url":null,"abstract":"Recent years have seen the emergence of new technologies that exploit nanoscale evaporation, ranging from nanoporous membranes for distillation to evaporative cooling in electronics. Despite the increasing depth of fundamental knowledge, there is still a lack of simulation tools capable of capturing the underlying non-equilibrium liquid–vapour phase changes that are critical to these and other such technologies. This work presents a molecular kinetic theory model capable of describing the entire flow field, i.e. the liquid and vapour phases and their interface, while striking a balance between accuracy and computational efficiency. In particular, unlike previous kinetic models based on the isothermal assumption, the proposed model can capture the temperature variations that occur during the evaporation process, yet does not require the computational resources of more complicated mean-field kinetic approaches. We assess the present kinetic model in three test cases: liquid–vapour equilibrium, evaporation into near-vacuum condition, and evaporation into vapour. The results agree well with benchmark solutions, while reducing the simulation time by almost two orders of magnitude on average in the cases studied. The results therefore suggest that this work is a stepping stone towards the development of an accurate and efficient computational approach to optimising the next generation of nanotechnologies based on nanoscale evaporation.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"203 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Negative available potential energy dissipation as the fundamental criterion for double diffusive instabilities","authors":"R. Tailleux","doi":"10.1017/jfm.2024.647","DOIUrl":"https://doi.org/10.1017/jfm.2024.647","url":null,"abstract":"The background potential energy (BPE) is the only reservoir that double diffusive instabilities can tap their energy from when developing from an unforced motionless state with no available potential energy (APE). Recently, Middleton and Taylor linked the extraction of BPE into APE to the sign of the diapycnal component of the buoyancy flux, but their criterion can predict only diffusive convection instability, not salt finger instability. Here, we show that the problem can be corrected if the sign of the APE dissipation rate is used instead, making it emerge as the most fundamental criterion for double diffusive instabilities. A theory for the APE dissipation rate for a two-component fluid relative to its single-component counterpart is developed as a function of three parameters: the diffusivity ratio, the density ratio, and a spiciness parameter. The theory correctly predicts the occurrence of both salt finger and diffusive convection instabilities in the laminar unforced regime, while more generally predicting that the APE dissipation rate for a two-component fluid can be enhanced, suppressed, or even have the opposite sign compared to that for a single-component fluid, with important implications for the study of ocean mixing. Because negative APE dissipation can also occur in stably stratified single-component and doubly stable two-component stratified fluids, we speculate that only the thermodynamic theory of exergy can explain its physics; however, this necessitates accepting that APE dissipation is a conversion between APE and the internal energy component of BPE, in contrast to prevailing assumptions.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"16 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of outer large-scale motions on near-wall structures in compressible turbulent channel flows","authors":"Zisong Zhou, Yixiao Wang, Shuohan Zhang, Wei-Xi Huang, Chun-Xiao Xu","doi":"10.1017/jfm.2024.755","DOIUrl":"https://doi.org/10.1017/jfm.2024.755","url":null,"abstract":"The influence of outer large-scale motions (LSMs) on near-wall structures in compressible turbulent channel flows is investigated. To separate the compressibility effects, velocity fluctuations are decomposed into solenoidal and dilatational components using the Helmholtz decomposition method. Solenoidal velocity fluctuations manifest as near-wall streaks and outer large-scale structures. The spanwise drifting of near-wall solenoidal streaks is found to be driven by the outer LSMs, while LSMs have a trivial influence on the spanwise density of solenoidal streaks, consistent with the outer LSM impacts found in incompressible flows (Zhou <jats:italic>et al.</jats:italic>, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 940, 2022, p. A23). Dilatational motions are characterized by the near-wall small-scale travelling-wave packets and the large-scale parts in the outer region. The streamwise advection velocity of the near-wall structures remains at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007559_inline1.png\"/> <jats:tex-math>$16 sim 18u_{tau }$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, hardly influenced by Mach numbers, Reynolds numbers and wall temperatures. The spanwise drifting of near-wall dilatational structures, quantified by the particle image velocimetry method, follows a mechanism distinct from solenoidal streaks. This drifting velocity is notably larger than those of the solenoidal streaks, and the influence of outer LSMs is not the primary trigger for this drifting.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"16 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resurrection of a superhydrophobic cylinder impacting onto liquid bath","authors":"Wanqiu Zhang, Yaochen Mei, Chenyu Fu, Xinping Zhou","doi":"10.1017/jfm.2024.691","DOIUrl":"https://doi.org/10.1017/jfm.2024.691","url":null,"abstract":"An interesting resurrection phenomenon (including the initial complete submersion, subsequent resurfacing and final rebounding) of a superhydrophobic sphere impacting onto a liquid bath was observed in experiments and direct numerical simulations by Galeano-Rios <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 912, 2021, A17). We investigate the mechanisms of the liquid entry for a superhydrophobic cylinder in this paper. The superhydrophobic cylinder, commonly employed as supporting legs for insects and robots at the liquid surface, can exhibit liquid-entry mechanisms different from those observed with the sphere. The direct numerical simulation method is applied to the impact of a two-dimensional (2-D) superhydrophobic cylinder (modelled as a pseudo-solid) onto a liquid bath. We find that for the impacting cylinder the resurrection phenomenon can also exist, and the cylinder can either rebound (get detached from the liquid surface) or stay afloat after resurfacing. The cylinder impact behaviour is classified into four regimes, i.e. floating, bouncing, resurrecting (resurrecting-floating and resurrecting-bouncing) and sinking, dependent on the Weber number and the density ratio of the cylinder to the liquid. For the regimes of floating and bouncing, the force analysis indicates that the form drag dominates the motion of the cylinder in the very beginning of the impact, while subsequently the surface tension force also plays a role with the contact line pinning on the horizontal midline of the cylinder. For the critical states of the highlighted resurrecting regime, our numerical results show that the rising height for the completely submerged cylinder of different density ratios remains nearly unchanged. Accordingly, a relation between the maximum ascending velocity and the density ratio is derived to predict whether the completely submerged cylinder can resurface.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modon solutions in an N-layer quasi-geostrophic model","authors":"Matthew N. Crowe, Edward R. Johnson","doi":"10.1017/jfm.2024.619","DOIUrl":"https://doi.org/10.1017/jfm.2024.619","url":null,"abstract":"Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"15 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the three-dimensional structure of instabilities beneath shallow-shoaling internal waves","authors":"Nicolas Castro-Folker, Marek Stastna","doi":"10.1017/jfm.2024.703","DOIUrl":"https://doi.org/10.1017/jfm.2024.703","url":null,"abstract":"The stimulation of instability and transport in the bottom boundary layer by internal solitary waves has been documented for over twenty years. However, the challenge of shallow slopes and a disparity of scales between the large-scale wave and the small-scale boundary layer has proven challenging for simulations. We present laboratory scale simulations that resolve the three-dimensionalisation in the boundary layer during the entire shoaling process. We find that the late stage, in which the incoming wave fissions into boluses, provides the most consistent source of three-dimensionalisation. In the early stage of shoaling, three-dimensionalisation occurs not so much due to separation bubble instability, but due to the interaction of vortices shed from the separation bubble with the overlying pycnocline. This interaction overturns the pycnocline, and creates bursts in kinetic energy and viscous dissipation, suggesting that the shed vortices induce turbulent motion and sediment resuspension in the water column above and behind the separation bubble.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"19 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amanda S.M. Smyth, Takafumi Nishino, Andhini N. Zurman-Nasution
{"title":"Coupled unsteady actuator disc and linear theory of an oscillating foil propulsor","authors":"Amanda S.M. Smyth, Takafumi Nishino, Andhini N. Zurman-Nasution","doi":"10.1017/jfm.2024.624","DOIUrl":"https://doi.org/10.1017/jfm.2024.624","url":null,"abstract":"Linear unsteady aerofoil theory, while successfully used for the prediction of unsteady aerofoil lift for many decades, has yet to be proven adequate for predicting the propulsive performance of oscillating aerofoils. In this paper we test the hypothesis that the central shortcoming of linear small-amplitude models, such as the Garrick function, is the failure to account for the flow acceleration caused by aerofoil thrust. A new analytical model is developed by coupling the Garrick function to a cycle-averaged actuator disc model, in a manner analogous to the blade-element momentum theory for wind turbines and propellers. This amounts to assuming the Garrick function to be locally valid and, in combination with a global control volume analysis, enables the prediction of flow acceleration at the aerofoil. The new model is demonstrated to substantially improve the agreement with large-eddy simulations of an aerofoil in combined heave and pitch motion.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"72 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}