{"title":"Coastal wave refraction in variable currents over a varying bathymetry.","authors":"Trygve Halsne, Yan Li","doi":"10.1017/jfm.2025.10573","DOIUrl":"10.1017/jfm.2025.10573","url":null,"abstract":"<p><p>Refraction is the predominant mechanism causing spatially inhomogeneous surface gravity wave fields. However, the complex interplay between depth- and current-induced wave refraction remains poorly understood. Assuming weak currents and slowly varying bathymetry, we derive an analytical approximation to the wave ray curvature, which is validated by an open-source ray tracing framework. The approximation has the form of linear superposition of a current- and a depth-induced component, each depending on the gradients in the ambient fields. This separation enables quantification of their individual and combined contributions to refraction. Through analysis of a few limiting cases, we demonstrate how the sign and magnitude of these components influence the wave refraction, and identify conditions where they either amplify or counteract each other. We also identify which of the two plays a dominant role. These findings provide physically resolved insights into the influence of current and depth gradients on wave propagation, and are relevant for applications related to remote sensing and coastal wave forecasting services.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"1019 ","pages":"A6"},"PeriodicalIF":3.9,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7618210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145251129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miriam F Sterl, André Palóczy, Sjoerd Groeskamp, Michiel L J Baatsen, Joseph H LaCasce, Pål E Isachsen
{"title":"The joint effects of planetary <i>β</i>, topography and friction on baroclinic instability in a two-layer QG model.","authors":"Miriam F Sterl, André Palóczy, Sjoerd Groeskamp, Michiel L J Baatsen, Joseph H LaCasce, Pål E Isachsen","doi":"10.1017/jfm.2025.10172","DOIUrl":"10.1017/jfm.2025.10172","url":null,"abstract":"<p><p>The quasi-geostrophic two-layer model is a widely used tool to study baroclinic instability in the ocean. One instability criterion for the inviscid two-layer model is that the potential vorticity (PV) gradient must change sign between the layers. This has a well-known implication if the model includes a linear bottom slope: for sufficiently steep retrograde slopes, instability is suppressed for a flow parallel to the isobaths. This changes in the presence of bottom friction as well as when the PV gradients in the layers are not aligned. We derive the generalised instability condition for the two-layer model with nonzero friction and arbitrary mean flow orientation. This condition involves neither the friction coefficient nor the bottom slope; even infinitesimally weak bottom friction destabilises the system regardless of the bottom slope. We then examine the instability characteristics as a function of varying slope orientation and magnitude. The system is stable across all wavenumbers only if friction is absent and if the planetary, topographic and stretching PV gradients are aligned. Strong bottom friction decreases the growth rates but also alters the dependence on bottom slope. Thus the often mentioned stabilisation by steep bottom slopes in the two-layer model only holds in very specific circumstances and thus probably plays only a limited role in the ocean.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"1012 ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144584099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pulsatile flow in a thin-walled viscoelastic tube.","authors":"Oleksander Krul, Prosenjit Bagchi","doi":"10.1017/jfm.2025.150","DOIUrl":"10.1017/jfm.2025.150","url":null,"abstract":"<p><p>Low inertia, pulsatile flows in highly distensible, viscoelastic vessels exist in many biological and engineering systems. However, many existing works focus on inertial, pulsatile flows in vessels with small deformations. As such, here we study the dynamics of a viscoelastic tube at large deformation conveying low Reynolds number, oscillatory flow using a fully-coupled fluid/structure interaction computational model. We focus on a detailed study on the effect of wall (solid) viscosity and oscillation frequency on the tube deformation, flow rate, phase shift and hysteresis, and the underlying flow physics. We find that the general behavior is dominated by an elastic flow surge during inflation and a squeezing effect during deflation. When increasing the oscillation frequency, the maximum inlet flow rate increases and tube distention decreases, whereas increasing solid viscosity causes both to decrease. As the oscillation frequency approaches either 0 (quasi-steady inflation cycle) or ∞ (steady flow), the behaviors of tubes with different solid viscosities converge. Our results suggest that deformation and flow rate are most affected in the intermediate range of solid viscosity and oscillation frequency. Phase shifts of deformation and flow rate with respect to the imposed pressure are analyzed. We predict that the phase shifts vary throughout the oscillation; while the deformation always lags the imposed pressure, the flow rate may either lead or lag depending on the parameter values. As such, the flow rate shows hysteresis behavior that traces either a clockwise or counterclockwise curve, or a mix of both, in the pressure-flow rate space. This directional change in hysteresis is fully characterized here in the appropriate parameter space. Furthermore, the hysteresis direction is shown to be predicted by the signs of the flow rate phase shifts at the crest and trough of the oscillation. A distinct change in the tube dynamics is also observed at high solid viscosity which leads to global or \"whole-tube\" motion that is absent in purely elastic tubes.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"1007 ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360716/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144956867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas Perez, Armand Leclerc, Guillaume Laibe, Pierre Delplace
{"title":"Topology of shallow-water waves on a rotating sphere.","authors":"Nicolas Perez, Armand Leclerc, Guillaume Laibe, Pierre Delplace","doi":"10.1017/jfm.2024.1228","DOIUrl":"10.1017/jfm.2024.1228","url":null,"abstract":"<p><p>Topological properties of the spectrum of shallow-water waves on a rotating spherical body are established. Particular attention is paid to spectral flow, i.e. the modes whose frequencies transit between the Rossby and inertia-gravity wavebands as the zonal wavenumber is varied. Organising the modes according to the number of zeros of their meridional velocity, we conclude that the net number of modes transiting between the shallow-water wavebands on the sphere is null, in contrast to the Matsuno spectrum. This difference can be explained by a miscount of zeros under the <i>β</i>-plane approximation. We corroborate this result with the analysis of Delplace <i>et al</i>. (<i>Science</i>, vol. 358, 2017, pp. 1075-1077) by showing that the curved metric discloses a pair of degeneracy points in the Weyl symbol of the wave operator, non-existent under the <i>β</i>-plane approximation, each of them bearing a Chern number of -1.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"1003 ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C El Mertahi, N Grandmaison, C Dupont, R Jellali, D Brancherie, A-V Salsac
{"title":"Microrheometric study of damage and rupture of capsules in simple shear flow.","authors":"C El Mertahi, N Grandmaison, C Dupont, R Jellali, D Brancherie, A-V Salsac","doi":"10.1017/jfm.2024.952","DOIUrl":"10.1017/jfm.2024.952","url":null,"abstract":"<p><p>Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow. We here investigate the damage and rupture of bioartificial microcapsules made of ovalbumin reticulated with terephthaloyl chloride and placed in simple shear flow. We characterize damage by identifying how the surface shear modulus of the capsule membrane changes over time. Rupture is then characterized by comparing the number and size distribution of capsules before and after exposure to shear, while varying the shear rates and time during which capsules are sheared. Our findings reveal how the percentage of ruptured capsules increases with their size, exposure time to shear, and the ratio of viscous to elastic forces at rupture.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"1000 ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aaron Barrett, Aaron L Fogelson, M Gregory Forest, Cole Gruninger, Sookkyung Lim, Boyce E Griffith
{"title":"Flagellum Pumping Efficiency in Shear-Thinning Viscoelastic Fluids.","authors":"Aaron Barrett, Aaron L Fogelson, M Gregory Forest, Cole Gruninger, Sookkyung Lim, Boyce E Griffith","doi":"10.1017/jfm.2024.666","DOIUrl":"10.1017/jfm.2024.666","url":null,"abstract":"<p><p>Microorganism motility often takes place within complex, viscoelastic fluid environments, e.g., sperm in cervicovaginal mucus and bacteria in biofilms. In such complex fluids, strains and stresses generated by the microorganism are stored and relax across a spectrum of length and time scales and the complex fluid can be driven out of its linear response regime. Phenomena not possible in viscous media thereby arise from feedback between the swimmer and the complex fluid, making swimming efficiency co-dependent on the propulsion mechanism and fluid properties. Here we parameterize a flagellar motor and filament properties together with elastic relaxation and nonlinear shear-thinning properties of the fluid in a computational immersed boundary model. We then explore swimming efficiency, defined as a particular flow rate divided by the torque required to spin the motor, over this parameter space. Our findings indicate that motor efficiency (measured by the volumetric flow rate) can be boosted or degraded by relatively moderate or strong shear-thinning of the viscoelastic environment.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"999 ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuning Zhao, Wentao Ma, Junqin Chen, Gaoming Xiang, Pei Zhong, Kevin Wang
{"title":"Vapour bubbles produced by long-pulsed laser: a race between advection and phase transition.","authors":"Xuning Zhao, Wentao Ma, Junqin Chen, Gaoming Xiang, Pei Zhong, Kevin Wang","doi":"10.1017/jfm.2024.989","DOIUrl":"10.1017/jfm.2024.989","url":null,"abstract":"<p><p>Vapor bubbles produced by long-pulsed laser often have complex non-spherical shapes that reflect some characteristics of the laser beam. The transition between two commonly observed shapes - namely, a rounded pear-like shape and an elongated conical shape - is studied using a new computational model that combines compressible multiphase fluid dynamics with laser radiation and phase transition. Two laboratory experiments are simulated, in which Holmium:YAG and Thulium fiber lasers are used respectively to generate bubbles of different shapes. In both cases, the predicted bubble nucleation and morphology agree reasonably well with the experimental observation. The full-field results of laser irradiance, temperature, velocity, and pressure are analyzed to explain bubble dynamics and energy transmission. It is found that due to the lasting energy input, the vapor bubble's dynamics is driven not only by advection, but also by the continued vaporization at its surface. Vaporization lasts less than 1 microsecond in the case of the pear-shaped bubble, compared to over 50 microseconds for the elongated bubble. It is thus hypothesized that the bubble's morphology is determined by a competition. When the speed of advection is higher than that of vaporization, the bubble tends to grow spherically. Otherwise, it elongates along the laser beam direction. To test this hypothesis, the two speeds are defined analytically using a model problem, then estimated for the experiments using simulation results. The results support the hypothesis. They also suggest that when the laser's power is fixed, a higher laser absorption coefficient and a narrower beam facilitate bubble elongation.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"999 ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144742255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Particle chirality does not matter in the large-scale features of strong turbulence.","authors":"G Piumini, M P A Assen, D Lohse, R Verzicco","doi":"10.1017/jfm.2024.577","DOIUrl":"10.1017/jfm.2024.577","url":null,"abstract":"<p><p>We use three-dimensional direct numerical simulations of homogeneous isotropic turbulence in a cubic domain to investigate the dynamics of heavy, chiral, finite-size inertial particles and their effects on the flow. Using an immersed-boundary method and a complex collision model, four-way coupled simulations have been performed and the effects of particle-to-fluid density ratio, turbulence strength, and particle volume fraction have been analysed. We find that freely falling particles on the one hand add energy to the turbulent flow but, on the other hand, they also enhance the flow dissipation: depending on the combination of flow parameters, the former or the latter mechanism prevails, thus yielding enhanced or weakened turbulence. Furthermore, particle chirality entails a preferential angular velocity which induces a net vorticity in the fluid phase. As turbulence strengthens, the energy introduced by the falling particles becomes less relevant and stronger velocity fluctuations alter the solid phase dynamics, making the effect of chirality irrelevant for the large-scale features of the flow. Moreover, comparing the time-history of collision events for chiral particles and spheres (at the same volume fraction) suggests that the former tend to entangle, in contrast to the latter which rebound impulsively.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"995 ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142348074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Swirling electrolyte. Part 2. Secondary circulation and its stability","authors":"Sergey A. Suslov, Daniel T. Hayes","doi":"10.1017/jfm.2024.734","DOIUrl":"https://doi.org/10.1017/jfm.2024.734","url":null,"abstract":"The asymptotic analysis of steady azimuthally invariant electromagnetically driven flows occurring in a shallow annular layer of electrolyte undertaken in Part 1 of this study (McCloughan & Suslov, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 980, 2024, A59) predicted the existence of a two-tori flow state that has not been detected previously. In Part 2 of the study we confirm its existence by numerical time integration of the governing equations. We observe a hysteresis, where the type of solution obtained for the same set of governing parameters depends on the choice of the initial conditions and the way the governing parameters change, which is fully consistent with the analytic results of Part 1. Subsequently, we perform a linear stability analysis of the newly obtained steady state and deduce that the experimentally observed anti-cyclonic free-surface vortices appear on its background as a result of a centrifugal (Rayleigh-type) instability of the interface separating two counter-rotating toroidal structures that form the newly found flow solution. The quantitative characteristics of such instability structures are determined. It is shown that such structures can only exist in sufficiently thin layers with the depth not exceeding a certain critical value.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}