{"title":"粒子的手性在强湍流的大尺度特征中并不重要。","authors":"G Piumini, M P A Assen, D Lohse, R Verzicco","doi":"10.1017/jfm.2024.577","DOIUrl":null,"url":null,"abstract":"<p><p>We use three-dimensional direct numerical simulations of homogeneous isotropic turbulence in a cubic domain to investigate the dynamics of heavy, chiral, finite-size inertial particles and their effects on the flow. Using an immersed-boundary method and a complex collision model, four-way coupled simulations have been performed and the effects of particle-to-fluid density ratio, turbulence strength, and particle volume fraction have been analysed. We find that freely falling particles on the one hand add energy to the turbulent flow but, on the other hand, they also enhance the flow dissipation: depending on the combination of flow parameters, the former or the latter mechanism prevails, thus yielding enhanced or weakened turbulence. Furthermore, particle chirality entails a preferential angular velocity which induces a net vorticity in the fluid phase. As turbulence strengthens, the energy introduced by the falling particles becomes less relevant and stronger velocity fluctuations alter the solid phase dynamics, making the effect of chirality irrelevant for the large-scale features of the flow. Moreover, comparing the time-history of collision events for chiral particles and spheres (at the same volume fraction) suggests that the former tend to entangle, in contrast to the latter which rebound impulsively.</p>","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616639/pdf/","citationCount":"0","resultStr":"{\"title\":\"Particle chirality does not matter in the large-scale features of strong turbulence.\",\"authors\":\"G Piumini, M P A Assen, D Lohse, R Verzicco\",\"doi\":\"10.1017/jfm.2024.577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We use three-dimensional direct numerical simulations of homogeneous isotropic turbulence in a cubic domain to investigate the dynamics of heavy, chiral, finite-size inertial particles and their effects on the flow. Using an immersed-boundary method and a complex collision model, four-way coupled simulations have been performed and the effects of particle-to-fluid density ratio, turbulence strength, and particle volume fraction have been analysed. We find that freely falling particles on the one hand add energy to the turbulent flow but, on the other hand, they also enhance the flow dissipation: depending on the combination of flow parameters, the former or the latter mechanism prevails, thus yielding enhanced or weakened turbulence. Furthermore, particle chirality entails a preferential angular velocity which induces a net vorticity in the fluid phase. As turbulence strengthens, the energy introduced by the falling particles becomes less relevant and stronger velocity fluctuations alter the solid phase dynamics, making the effect of chirality irrelevant for the large-scale features of the flow. Moreover, comparing the time-history of collision events for chiral particles and spheres (at the same volume fraction) suggests that the former tend to entangle, in contrast to the latter which rebound impulsively.</p>\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.577\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.577","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Particle chirality does not matter in the large-scale features of strong turbulence.
We use three-dimensional direct numerical simulations of homogeneous isotropic turbulence in a cubic domain to investigate the dynamics of heavy, chiral, finite-size inertial particles and their effects on the flow. Using an immersed-boundary method and a complex collision model, four-way coupled simulations have been performed and the effects of particle-to-fluid density ratio, turbulence strength, and particle volume fraction have been analysed. We find that freely falling particles on the one hand add energy to the turbulent flow but, on the other hand, they also enhance the flow dissipation: depending on the combination of flow parameters, the former or the latter mechanism prevails, thus yielding enhanced or weakened turbulence. Furthermore, particle chirality entails a preferential angular velocity which induces a net vorticity in the fluid phase. As turbulence strengthens, the energy introduced by the falling particles becomes less relevant and stronger velocity fluctuations alter the solid phase dynamics, making the effect of chirality irrelevant for the large-scale features of the flow. Moreover, comparing the time-history of collision events for chiral particles and spheres (at the same volume fraction) suggests that the former tend to entangle, in contrast to the latter which rebound impulsively.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.