{"title":"旋转的电解质第 2 部分:二次循环及其稳定性二次循环及其稳定性","authors":"Sergey A. Suslov, Daniel T. Hayes","doi":"10.1017/jfm.2024.734","DOIUrl":null,"url":null,"abstract":"The asymptotic analysis of steady azimuthally invariant electromagnetically driven flows occurring in a shallow annular layer of electrolyte undertaken in Part 1 of this study (McCloughan & Suslov, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 980, 2024, A59) predicted the existence of a two-tori flow state that has not been detected previously. In Part 2 of the study we confirm its existence by numerical time integration of the governing equations. We observe a hysteresis, where the type of solution obtained for the same set of governing parameters depends on the choice of the initial conditions and the way the governing parameters change, which is fully consistent with the analytic results of Part 1. Subsequently, we perform a linear stability analysis of the newly obtained steady state and deduce that the experimentally observed anti-cyclonic free-surface vortices appear on its background as a result of a centrifugal (Rayleigh-type) instability of the interface separating two counter-rotating toroidal structures that form the newly found flow solution. The quantitative characteristics of such instability structures are determined. It is shown that such structures can only exist in sufficiently thin layers with the depth not exceeding a certain critical value.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swirling electrolyte. Part 2. Secondary circulation and its stability\",\"authors\":\"Sergey A. Suslov, Daniel T. Hayes\",\"doi\":\"10.1017/jfm.2024.734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The asymptotic analysis of steady azimuthally invariant electromagnetically driven flows occurring in a shallow annular layer of electrolyte undertaken in Part 1 of this study (McCloughan & Suslov, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 980, 2024, A59) predicted the existence of a two-tori flow state that has not been detected previously. In Part 2 of the study we confirm its existence by numerical time integration of the governing equations. We observe a hysteresis, where the type of solution obtained for the same set of governing parameters depends on the choice of the initial conditions and the way the governing parameters change, which is fully consistent with the analytic results of Part 1. Subsequently, we perform a linear stability analysis of the newly obtained steady state and deduce that the experimentally observed anti-cyclonic free-surface vortices appear on its background as a result of a centrifugal (Rayleigh-type) instability of the interface separating two counter-rotating toroidal structures that form the newly found flow solution. The quantitative characteristics of such instability structures are determined. It is shown that such structures can only exist in sufficiently thin layers with the depth not exceeding a certain critical value.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.734\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.734","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Swirling electrolyte. Part 2. Secondary circulation and its stability
The asymptotic analysis of steady azimuthally invariant electromagnetically driven flows occurring in a shallow annular layer of electrolyte undertaken in Part 1 of this study (McCloughan & Suslov, J. Fluid Mech., vol. 980, 2024, A59) predicted the existence of a two-tori flow state that has not been detected previously. In Part 2 of the study we confirm its existence by numerical time integration of the governing equations. We observe a hysteresis, where the type of solution obtained for the same set of governing parameters depends on the choice of the initial conditions and the way the governing parameters change, which is fully consistent with the analytic results of Part 1. Subsequently, we perform a linear stability analysis of the newly obtained steady state and deduce that the experimentally observed anti-cyclonic free-surface vortices appear on its background as a result of a centrifugal (Rayleigh-type) instability of the interface separating two counter-rotating toroidal structures that form the newly found flow solution. The quantitative characteristics of such instability structures are determined. It is shown that such structures can only exist in sufficiently thin layers with the depth not exceeding a certain critical value.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.