Subcritical transitional flow in two-dimensional plane Poiseuille flow

IF 3.6 2区 工程技术 Q1 MECHANICS
Z. Huang, R. Gao, Y.Y. Gao, G. Xi
{"title":"Subcritical transitional flow in two-dimensional plane Poiseuille flow","authors":"Z. Huang, R. Gao, Y.Y. Gao, G. Xi","doi":"10.1017/jfm.2024.752","DOIUrl":null,"url":null,"abstract":"Recently, subcritical transition to turbulence in the quasi-two-dimensional (quasi-2-D) shear flow with strong linear friction (Camobreco <jats:italic>et al.</jats:italic>, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 963, 2023, R2) has been demonstrated by the 2-D mechanism at <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline1.png\"/> <jats:tex-math>$Re = 71\\,211$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the nonlinear Tollmien–Schlichting (TS) waves related to the edge state were approached independently of initial optimal disturbances. For 2-D plane Poiseuille flow, transition to the fully developed turbulence requires that the Reynolds number is several times larger than the critical Reynolds number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline2.png\"/> <jats:tex-math>$Re_c$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (Markeviciute &amp; Kerswell, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 917, 2021, A57). In this paper, we observed the subcritical transitional flow in 2-D plane Poiseuille flow driven by the nonlinear TS waves by both linear and nonlinear optimal disturbances (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline3.png\"/> <jats:tex-math>$Re &lt; Re_c$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with different quantitative edge states. The nonlinear optimal disturbances could trigger the sustained subcritical transitional flow for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline4.png\"/> <jats:tex-math>$Re \\geqslant 2400$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The initial energy for nonlinear optimal disturbance is more efficient than the linear optimal disturbance in reaching the subcritical transitional flow for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline5.png\"/> <jats:tex-math>$2400 \\leqslant Re \\leqslant 5000$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, the initial energy of linear optimal disturbance is larger than the energy of its edge state. The nonlinear TS waves along the edge state are formed by the nonlinear optimal disturbances to trigger transitional flow, which agrees well with the main conclusions of Camobreco <jats:italic>et al.</jats:italic> (<jats:italic>J. Fluid Mech.</jats:italic>, vol. 963, 2023, R2), while the required <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024007523_inline6.png\"/> <jats:tex-math>$Re$</jats:tex-math> </jats:alternatives> </jats:inline-formula> of 2-D plane Poiseuille flow is much smaller.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"44 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.752","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, subcritical transition to turbulence in the quasi-two-dimensional (quasi-2-D) shear flow with strong linear friction (Camobreco et al., J. Fluid Mech., vol. 963, 2023, R2) has been demonstrated by the 2-D mechanism at $Re = 71\,211$ , and the nonlinear Tollmien–Schlichting (TS) waves related to the edge state were approached independently of initial optimal disturbances. For 2-D plane Poiseuille flow, transition to the fully developed turbulence requires that the Reynolds number is several times larger than the critical Reynolds number $Re_c$ (Markeviciute & Kerswell, J. Fluid Mech., vol. 917, 2021, A57). In this paper, we observed the subcritical transitional flow in 2-D plane Poiseuille flow driven by the nonlinear TS waves by both linear and nonlinear optimal disturbances ( $Re < Re_c$ ) with different quantitative edge states. The nonlinear optimal disturbances could trigger the sustained subcritical transitional flow for $Re \geqslant 2400$ . The initial energy for nonlinear optimal disturbance is more efficient than the linear optimal disturbance in reaching the subcritical transitional flow for $2400 \leqslant Re \leqslant 5000$ . Moreover, the initial energy of linear optimal disturbance is larger than the energy of its edge state. The nonlinear TS waves along the edge state are formed by the nonlinear optimal disturbances to trigger transitional flow, which agrees well with the main conclusions of Camobreco et al. (J. Fluid Mech., vol. 963, 2023, R2), while the required $Re$ of 2-D plane Poiseuille flow is much smaller.
二维平面 Poiseuille 流中的次临界过渡流
最近,在具有强线性摩擦的准二维(quasi-2-D)剪切流(Camobreco et al., J. Fluid Mech., vol. 963, 2023, R2)中,在 $Re = 71\,211$ 时的二维机制证明了向湍流的亚临界过渡,并且与边缘状态相关的非线性 Tollmien-Schlichting (TS) 波与初始最佳扰动无关。对于 2-D 平面 Poiseuille 流,过渡到充分发展的湍流需要雷诺数比临界雷诺数 $Re_c$ 大几倍(Markeviciute & Kerswell, J. Fluid Mech.,第 917 卷,2021 年,A57 期)。在本文中,我们观察了由线性和非线性最优扰动($Re < Re_c$)驱动的非线性 TS 波在二维平面波瓦流中的亚临界过渡流,其边缘状态不同。非线性最优扰动可在 $Re \geqslant 2400$ 时引发持续的亚临界过渡流。在 $2400 \leqslant Re \leqslant 5000$ 时,非线性最优扰动的初始能量比线性最优扰动更有效地达到亚临界过渡流。此外,线性最优扰动的初始能量大于其边缘状态的能量。非线性最优扰动沿边缘态形成的非线性TS波引发过渡流,这与Camobreco等(J. Fluid Mech.,vol. 963, 2023, R2)的主要结论一致,而二维平面Poiseuille流所需的Re$要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信