Internal heating profiles for which downward conduction is impossible

IF 3.6 2区 工程技术 Q1 MECHANICS
Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn
{"title":"Internal heating profiles for which downward conduction is impossible","authors":"Ali Arslan, Giovanni Fantuzzi, John Craske, Andrew Wynn","doi":"10.1017/jfm.2024.590","DOIUrl":null,"url":null,"abstract":"We consider an internally heated fluid between parallel plates with fixed thermal fluxes. For a large class of heat sources that vary in the direction of gravity, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline1.png\"/> <jats:tex-math>$\\smash { \\smash {{\\langle {\\delta T} \\rangle _h}} } \\geq \\sigma R^{-1/3} - \\mu$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline2.png\"/> <jats:tex-math>$\\smash { \\smash {{\\langle {\\delta T} \\rangle _h}} }$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the average temperature difference between the bottom and top plates, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline3.png\"/> <jats:tex-math>$R$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a ‘flux’ Rayleigh number and the constants <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline4.png\"/> <jats:tex-math>$\\sigma,\\mu &gt;0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depend on the geometric properties of the internal heating. This result implies that mean downward conduction (for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline5.png\"/> <jats:tex-math>$\\smash { \\smash {{\\langle {\\delta T} \\rangle _h}} }&lt; 0$</jats:tex-math> </jats:alternatives> </jats:inline-formula>) is impossible for a range of Rayleigh numbers smaller than a critical value <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline6.png\"/> <jats:tex-math>$R_0:=(\\sigma /\\mu )^{3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The bound demonstrates that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline7.png\"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> depends on the heating distribution and can be made arbitrarily large by concentrating the heating near the bottom plate. However, for any given fixed heating profile of the class we consider, the corresponding value of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline8.png\"/> <jats:tex-math>$R_0$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is always finite. This points to a fundamental difference between internally heated convection and its limiting case of Rayleigh–Bénard convection with fixed-flux boundary conditions, for which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline9.png\"/> <jats:tex-math>$\\smash {{\\langle {\\delta T} \\rangle _h}}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> is known to be positive for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005901_inline10.png\"/> <jats:tex-math>$R$</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"16 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.590","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an internally heated fluid between parallel plates with fixed thermal fluxes. For a large class of heat sources that vary in the direction of gravity, we prove that $\smash { \smash {{\langle {\delta T} \rangle _h}} } \geq \sigma R^{-1/3} - \mu$ , where $\smash { \smash {{\langle {\delta T} \rangle _h}} }$ is the average temperature difference between the bottom and top plates, $R$ is a ‘flux’ Rayleigh number and the constants $\sigma,\mu >0$ depend on the geometric properties of the internal heating. This result implies that mean downward conduction (for which $\smash { \smash {{\langle {\delta T} \rangle _h}} }< 0$ ) is impossible for a range of Rayleigh numbers smaller than a critical value $R_0:=(\sigma /\mu )^{3}$ . The bound demonstrates that $R_0$ depends on the heating distribution and can be made arbitrarily large by concentrating the heating near the bottom plate. However, for any given fixed heating profile of the class we consider, the corresponding value of $R_0$ is always finite. This points to a fundamental difference between internally heated convection and its limiting case of Rayleigh–Bénard convection with fixed-flux boundary conditions, for which $\smash {{\langle {\delta T} \rangle _h}}$ is known to be positive for all $R$ .
不可能向下传导的内部加热曲线
我们考虑了具有固定热通量的平行板之间的内部加热流体。对于一大类在重力方向上变化的热源,我们证明 $\smash { \smash {{langle {\delta T} }\rangle _h}}}\geq \sigma R^{-1/3}- \mu$ , where $\smash { \smash { \langle { \delta T}\rangle _h}}}$ 是底板和顶板之间的平均温差,$R$ 是 "通量 "瑞利数,常数 $\sigma,\mu >0$ 取决于内部加热的几何特性。这一结果意味着,在雷利数小于临界值 $R_0:=(\sigma /\mu )^{3}$ 的范围内,平均向下传导(对其而言,$\smash { \langle {\delta T} \rangle _h}} }< 0$ )是不可能的。该临界值表明 $R_0$ 取决于加热分布,并且可以通过将加热集中在底板附近而任意增大。然而,对于我们所考虑的任何给定的固定加热曲线,相应的 $R_0$ 值总是有限的。这指出了内加热对流与具有固定流量边界条件的瑞利-贝纳德对流的极限情况之间的根本区别,对于后者,$\smash {{langle {\delta T}\rangle _h}}$ 对于所有 $R$ 都是正值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信