{"title":"N 层准地转模型中的模子解法","authors":"Matthew N. Crowe, Edward R. Johnson","doi":"10.1017/jfm.2024.619","DOIUrl":null,"url":null,"abstract":"Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"15 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modon solutions in an N-layer quasi-geostrophic model\",\"authors\":\"Matthew N. Crowe, Edward R. Johnson\",\"doi\":\"10.1017/jfm.2024.619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.619\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.619","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Modon solutions in an N-layer quasi-geostrophic model
Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.