{"title":"Pulsed Light Decontamination of Red Chilies (Capsicum annuum var. longum)","authors":"Kosana Pravallika, Snehasis Chakraborty","doi":"10.1111/jfs.13168","DOIUrl":"https://doi.org/10.1111/jfs.13168","url":null,"abstract":"<div>\u0000 \u0000 <p>The impact of pulsed light treatment (PLT) on natural microbiota and inoculated microbes such as <i>Salmonella</i> Typhimurium, <i>Bacillus cereus</i>, and <i>Aspergillus flavus</i> on red chilies was investigated. Sequential drying did not completely inactivate the aerobic mesophiles and yeast and mold count. Hence, PLT (0.53–2.59 J cm<sup>−2</sup>) was employed as a decontamination technology on red chilies. PLT resulted in 8 log reduction of inoculated microorganisms on chilies at 2.59 J cm<sup>−2</sup>. The microbial inactivation kinetics followed Weibull distribution (<i>R</i><sup>2</sup> > 0.97) with <i>β</i> value of 1.1, 1.2, and 1.5 for <i>S.</i> Typhimurium, <i>B. cereus</i>, and <i>A. flavus</i>, respectively. Changes in structure and composition of cell components were identified by SEM and FTIR analysis. After PLT, phenolics, antioxidants, flavonoids, and capsaicinoids were better retained but a significant change in ascorbic acid and carotenoid's content was observed. Hence, PL can be a potential technology for decontamination of fresh and dried chilies along with maximum retention of bioactives.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Antibacterial and Anti-Biofilm Functions of Black Bean Skin Anthocyanins Against V. parahaemolyticus","authors":"Dan Liu, Zhengwei Zhou, Yaokun Pang, Jianxia Sun","doi":"10.1111/jfs.13170","DOIUrl":"https://doi.org/10.1111/jfs.13170","url":null,"abstract":"<div>\u0000 \u0000 <p>Black bean skin anthocyanins (BBSAs), as by-products of black beans, have not been fully exploited. BBSAs are rich in anthocyanins and have a wide range of health benefits. In this study, the antibacterial and antibiofilm action mode of BBSAs against <i>Vibrio parahaemolyticus</i> (<i>V. parahaemolyticus</i>) was evaluated. The antibacterial and antibiofilm efficiency was evaluated under different conditions, shedding light on their mode of action against <i>V. parahaemolyticus</i>. The results showed that the inactivation efficacy of BBSAs on <i>V. parahaemolyticus</i> was positively correlated with its concentration and incubating time. The MIC value for BBSAs was determined to be 10 μg/mL. The formation of <i>V. parahaemolyticus</i> biofilm was hindered by the presence of the BBSAs, especially at higher concentrations of BBSAs and during the early intervention stage. After exposure to 1 MIC of BBSA, the inhibition rate of biofilm reached 91.94%. The release of cellular components and alterations in membrane morphology indicated that BBSAs can damage the integrity of <i>V. parahaemolyticus</i> cell membrane. Furthermore, BBSAs may interact with membrane proteins, causing a notable conformational change in membrane proteins. HPLC and UPLC-MS analysis confirmed that the major antibacterial compound in BBSAs was Cyanidin-3-O-glucoside (C3G), which can form a stable complex with LolB protein in the outer membrane via hydrogen bonding. This study can provide strong technical support for the accurate control of <i>V. parahaemolyticus</i> and pave the way for the application of natural antibacterial agents in the realm of food-borne bacterial control.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nodali Ndraha, Chia Hsuan Lin, Goh Ai Ping, Gia Dieu Tran, Li-Ming Su, Chien Li Huang, Cheng-Quan Chen, Shwu-Jene Tsai, Hsin-I Hsiao
{"title":"Assessment and Validation of Predictive Growth Models for Locally Isolated Salmonella enterica and Listeria monocytogenes in Alfalfa Sprouts at Various Temperatures","authors":"Nodali Ndraha, Chia Hsuan Lin, Goh Ai Ping, Gia Dieu Tran, Li-Ming Su, Chien Li Huang, Cheng-Quan Chen, Shwu-Jene Tsai, Hsin-I Hsiao","doi":"10.1111/jfs.13171","DOIUrl":"https://doi.org/10.1111/jfs.13171","url":null,"abstract":"<div>\u0000 \u0000 <p>Sprouts are popular due to their high nutritional content, including vitamins, minerals, antioxidants, and enzymes. However, the conditions favorable for sprouting, such as warm and humid environments, are also ideal for the growth of bacteria, including food-borne pathogens. Here, we analyzed the growth and developed predictive models of locally isolated and commercial strains of <i>Salmonella enterica</i> and <i>Listeria monocytogenes</i> in alfalfa sprouts under various constant temperatures, ranging from 5°C to 25°C. Our findings indicated that these pathogens could grow at 5°C in sprouts, albeit with a low growth rate. A rapid increase in concentration occurred at temperatures of 10°C and above. The fitted models demonstrated high performance, with <i>R</i><sup><i>2</i></sup> values ranging from 0.964 to 0.997 and RMSE values ranging from 0.15 to 0.51, respectively. Based on the fitted values, bias factor (<i>A</i><sub><i>f</i></sub>) values varied between 1.01 and 1.06, with all accuracy factor (<i>B</i><sub><i>f</i></sub>) values at 1.00. Acceptable prediction zone (APZ) values ranged from 81.8% to 100%. Validation of the models under dynamic temperature conditions for specific strains showed acceptable performance. This study enhances our understanding of <i>S. enterica</i> and <i>L. monocytogenes</i> growth in alfalfa sprouts. The findings of this study could be used to improve the risk assessment of these pathogens in alfalfa sprouts.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retno Murwani, Yoni Anggun Endah Kurniati, Ambariyanto Ambariyanto, Anthony J. Sinskey
{"title":"Low-Temperature Domestic Deep-Frying of Soybean-Cake Tempe in Vegetable Cooking Oils: How Many Times Are Stable to Use?","authors":"Retno Murwani, Yoni Anggun Endah Kurniati, Ambariyanto Ambariyanto, Anthony J. Sinskey","doi":"10.1111/jfs.13165","DOIUrl":"https://doi.org/10.1111/jfs.13165","url":null,"abstract":"<div>\u0000 \u0000 <p>Tempe has gained global popularity, with local vegetable oils commonly used for frying. This study evaluates the cooking temperature and stability of five vegetable oils (olive [Oo], palm [Po], canola [Cnlo], sunflower [Sfo], and coconut [Cco]) for deep-frying Tempe, using acid and peroxide values (AV and PV), antiradical activity, and saturated and unsaturated fatty acids. AV, PV, and linolenic acid (LNA) were referenced to international standards for vegetable oil (0.6 mg KOH/g, 10 mEq of oxygen/kg oil, and 2% for AV, PV, LNA respectively). The initial oil temperature was 130°C ± 1°C, with final temperatures between 145.7°C ± 6.8°C at the lowest and 156.8°C ± 13.0°C at the highest, well below existing studies (≥170°C–250°C). Based on AV and PV, Oo, Po, and Cco were stable up to the fourth, fifth, and eighth frying repeat (FR). The PV of Cnlo (10.2 mEq of oxygen/kg oil) and Sfo (15.5 mEq of oxygen/kg oil) exceeded the maximum limit after one use. The Fresh Cnlo LNA (7.35%) was higher than the limit, while the rest of the oils remained lower and stable until the seventh FR. Po exhibited the highest average antiradical activity (85.42% ± 4.63%), followed by Oo (31.01% ± 10.26%), Sfo (27.96% ± 9.67%), Cnlo (21.85% ± 5.71%), and Cco (14.40% ± 3.46%). Cco had the highest saturated fatty acids (SFA), Oo had the highest monounsaturated fatty acids (MUFA), and Sfo had the highest polyunsaturated fatty acids (PUFA). No significant SFA, MUFA, or PUFA changes were observed up to the seventh FR. Trans-fatty acids C18:1n 9T and C18:2n 6T were undetected in fresh and used oil, indicating a unique character in low-temperature deep-frying in domestic settings. This study provides a comprehensive analysis of low-temperature deep-frying of <i>Tempe</i>. It suggests that Oo, Po, Cnlo, Sfo, and Cco were stable to deep-fried <i>Tempe</i> for four, five, zero, one, and eight FR, respectively. Deep-frying Tempe at lower temperatures and for a shorter duration may enhance its health benefits and help retain its flavor.”</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thi Tuong Vi Tran, Thanh-Thuy Dang, Nguyen Duy Lam, Quoc-Duy Nguyen, Tuan Sang Tran, Thi-Van-Linh Nguyen
{"title":"Application of Antioxidant- and Antimicrobial-Rich Extracts From Hass Avocado Pulp in the Development of Chitosan/Gelatin-Based Active Packaging Films for Raw Meat Preservation","authors":"Thi Tuong Vi Tran, Thanh-Thuy Dang, Nguyen Duy Lam, Quoc-Duy Nguyen, Tuan Sang Tran, Thi-Van-Linh Nguyen","doi":"10.1111/jfs.13162","DOIUrl":"https://doi.org/10.1111/jfs.13162","url":null,"abstract":"<div>\u0000 \u0000 <p>In the present study, the ethanolic extracts derived from Hass avocado pulp were observed to exhibit exceptional bioactive qualities and demonstrate bactericidal efficacy against a wide range of microorganisms, encompassing both gram-positive and gram-negative bacteria, as well as fungi. Therefore, this work aimed to develop a biodegradable active film by incorporating the Hass avocado extracts into chitosan/gelatin-based film (HGCF) for the preservation of beef and pork. The study reveals that the chitosan/gelatin-based film (GCF) and HGCF exhibit significant water stability and absorption capabilities. HGCF offered the synergy of antimicrobial properties of Hass avocado extracts and high swelling in water of chitosan/gelatin blend to absorb liquid discharged from fresh meat for prolonged storage. HGCF demonstrated a significant effectiveness in controlling microbial density in comparison to uncoated samples and samples coated with plain gelatin/chitosan film. In detail, HGCF was able to partially eliminate <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> during storage, resulting in the densities after 14 days that were similar to those of uncoated meat samples after 6 days. These results demonstrate the potential of HGCF as active packaging for food preservation and advance the sustainable production and preservation of meat products.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classification of Pesticide Residues in Sorghum Based on Hyperspectral and Gradient Boosting Decision Trees","authors":"Xinjun Hu, Jiahong Zhang, Yu Lei, Jianping Tian, Jianheng Peng, Manjiao Chen","doi":"10.1111/jfs.13166","DOIUrl":"https://doi.org/10.1111/jfs.13166","url":null,"abstract":"<div>\u0000 \u0000 <p>To address the challenges posed by chemical methods for detecting pesticide residues in sorghum, such as complicated sample preparation and prolonged detection periods, this study presents a rapid and nondestructive detection approach based on hyperspectral imaging (HSI) technology. A group of sorghum without pesticide residues and three groups uniformly sprayed with pesticides were used in this study. Firstly, support vector machine (SVM) classification models were built using spectral data preprocessed with Savitzky–Golay (SG), discrete wavelet transform (DWT), and standard normal variate (SNV) methods, respectively, and SNV was determined to be the best preprocessing method. Secondly, the gradient boosting decision tree (GBDT) algorithm, principal component analysis (PCA), and the successive projections algorithm (SPA) were respectively used to extract feature wavelengths. Pesticide residue identification models based on full and feature wavelengths were then respectively established using backpropagation neural network (BPNN), SVM, and partial least squares discriminant analysis (PLS-DA). The results show that the BPNN model developed using the feature wavelengths obtained from GBDT was the best for identification of pesticide residues, with an accuracy of 97.8% for both the training and testing sets. Finally, visualization of pesticide residue species in sorghum was achieved using the optimal model. This study demonstrates that utilizing HSI in conjunction with the GBDT-BPNN model is an effective, rapid, and nondestructive method for identifying pesticide residues in sorghum.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobial Efficacy of Peroxyacetic Acid Spray for Beef Carcasses and Cuts at Beef Processing Plants","authors":"Xianqin Yang, Hui Wang","doi":"10.1111/jfs.13164","DOIUrl":"https://doi.org/10.1111/jfs.13164","url":null,"abstract":"<p>The objective of this study was to assess the antimicrobial efficacy of peroxyacetic acid (PAA) for beef in processing facilities. Inactivation of a wildtype <i>Escherichia coli</i> strain by up to 400 ppm PAA in solutions with different organic loads was determined. The microbial efficacy of PAA was assessed at two commercial beef plants for carcasses and cuts during routine production. The wild type <i>E. coli</i> strain was reduced by >7 log CFU upon exposing to PAA for 15 s at >100 and 200 ppm in low and high organic load solutions, respectively. PAA spray significantly reduced coliforms and <i>E. coli</i> by 1.7–2.0 log units on carcasses artificially inoculated with fecal slurry at one plant, and reduced aerobes and coliforms by 1.7 and 1.0 log units on naturally contaminated carcasses at the other plant. The reduction by PAA spray of aerobes (<i>p</i> < 0.05) on artificially inoculated carcasses was <0.5 log. Significant and consistent reduction of aerobes and coliforms on cuts by PAA was observed for fat surface at both beef plants, but not for lean cut surface. However, fewer cuts sprayed with PAA were positive for <i>E. coli</i>, regardless of cut type, compared with those that were not sprayed. Taken together, PAA can be effective for reducing microbial contamination of beef carcasses and cuts in commercial practice.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfs.13164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142230966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esen Gul Demiroglu, Mitat Sahin, Emre Karakaya, Izzet Burcin Saticioglu, Yaren Ersoy, Ozgur Guran, Cansu Guran, Secil Abay, Fuat Aydin, Fatih Buyuk
{"title":"Virulence Genes Prevalence and Enterobacterial Repetitive Intergenic Consensus-PCR Profiles of Goose-Derived Campylobacter jejuni Isolates","authors":"Esen Gul Demiroglu, Mitat Sahin, Emre Karakaya, Izzet Burcin Saticioglu, Yaren Ersoy, Ozgur Guran, Cansu Guran, Secil Abay, Fuat Aydin, Fatih Buyuk","doi":"10.1111/jfs.13161","DOIUrl":"https://doi.org/10.1111/jfs.13161","url":null,"abstract":"<div>\u0000 \u0000 <p><i>Campylobacter jejuni</i> is a causative agent of gastroenteritis in humans worldwide, and wild and domestic poultry carry of this bacterium in their gastrointestinal tract. Molecular studies to determine the pathogenicity, origin, and epidemiological relationships among <i>C</i>. <i>jejuni</i> isolates from poultry such as chicken, turkey, and goose consumed as human food are important for public health and infection control. This study aimed to investigate the prevalence of virulence genes and Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) based genotyping of <i>C</i>. <i>jejuni</i> isolates obtained from goose cloacal swab samples. For this purpose, PCR analysis of <i>flaA</i>, <i>racR</i>, <i>dnaJ</i>, <i>pldA</i>, <i>cadF</i>, <i>cdtC</i>, <i>ciaB</i>, <i>cdtB</i>, <i>cdtA</i>, <i>virB11</i>, and <i>wlaN</i> virulence genes and ERIC-PCR analysis of 50 <i>C</i>. <i>jejuni</i> isolates were performed. The emerged genetic profiles and antimicrobial resistance genes regarding the isolates were interpreted with the existing multi-drug resistance (MDR) findings. Virulence gene positivity was detected as 88%, 84%, 82%, 82%, 80%, 80%, 72%, 30%, and 18% for <i>flaA</i>, <i>racR</i>, <i>dnaJ</i>, <i>pldA</i>, <i>cadF</i>, <i>cdtC</i>, <i>ciaB</i>, <i>cdtB</i>, and <i>cdtA</i>, respectively. <i>VirB11</i> and <i>wlaN</i> genes were not detected among the <i>C. jejuni</i> isolates. Virulence genes-based genotyping revealed that the <i>C</i>. <i>jejuni</i> isolates exhibited 22 profiles (A–V). As a result of ERIC-PCR analysis, the <i>C</i>. <i>jejuni</i> isolates showed heterogeneous distribution, exhibiting 14 different ERIC-PCR profiles (Cluster I [Cl-I]–Cluster XIV [Cl-XIV]). The MDR positivity was detected in 7 (14%) of the <i>C</i>. <i>jejuni</i> isolates. Tetracycline and ciprofloxacin were the antibiotics most frequently included in the MDR profiles. There was no clear correlation between ERIC-PCR profiles, virulence gene profiles, and MDR profiles. However, isolates with triple-MDR resistant to ampicillin, tetracycline, and ciprofloxacin showed significant heterogeneity in both ERIC-PCR profile and virulence gene-based genetic profile, all of which were positive for <i>ciaB</i> and <i>flaA</i> genes. These results indicate that carriage of the <i>C</i>. <i>jejuni</i> isolates with high gene prevalence and MDR profiles by geese may pose a risk for <i>Campylobacter</i> infections in humans.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Zhou, Chunxia Dai, Joshua Harrington Aheto, Xiaorui Zhang
{"title":"Design of a Portable Electronic Nose for Identification of Minced Chicken Meat Adulterated With Soybean Protein Isolate","authors":"Min Zhou, Chunxia Dai, Joshua Harrington Aheto, Xiaorui Zhang","doi":"10.1111/jfs.13163","DOIUrl":"https://doi.org/10.1111/jfs.13163","url":null,"abstract":"<div>\u0000 \u0000 <p>The study aimed to develop a portable electronic nose system for detecting adulteration with soybean protein isolate (SPI) in chicken meat. The system mainly consisted of three parts: the gas sensor array, the DSP28335 control board, and the upper computer. The DSP28335 control board, developed using C language, included analog to digital converter (ADC) module, digital output (DO) module, pulse width modulation (PWM) module, controller area network (CAN) module, power module, drive circuit, and so forth. The upper computer, developed using LabVIEW, facilitated user interaction with the user by primarily handling CAN configuration and monitoring, displaying and storing sensor data, temperature and flow data, and sending and monitoring electronic nose commands. The feasibility of the proposed electronic nose for characterizing adulterated chicken meat was tested on six classes of chicken meat that had been adulterated with varied quantities of SPI. The mass fractions of SPI were 0%, 5%, 10%, 15%, 20%, and 25%, respectively. On the basis of odor data from the electronic nose, K-nearest neighbor (KNN), linear discriminant analysis (LDA), and support vector machine (SVM) were applied to qualitatively distinguish minced chicken meat with different adulteration ratios. The results showed that the SVM model had the best recognition effect. When the best parameters (<i>c</i>, <i>g</i>) were <i>c</i> = 16 and <i>g</i> = 1, the accuracy of SVM model was 97.22% and 93.75% in the training and testing sets, respectively. These results demonstrated that the portable electronic nose designed in this paper effectively identifies minced chicken meat under various adulteration conditions, enabling rapid and nondestructive detection of chicken meat adulteration.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leandro Presenza, Bianca Ferraz Teixeira, Luis Felipe de Freitas Fabrício, Renato Grimaldi, Juliana Antunes Galvão, Thais Maria Ferreira de Souza Vieira
{"title":"Optimizing Byproduct Processing for Clean Label Foods: Avocado and MSM-Tambaqui With a Focus on Zero Waste","authors":"Leandro Presenza, Bianca Ferraz Teixeira, Luis Felipe de Freitas Fabrício, Renato Grimaldi, Juliana Antunes Galvão, Thais Maria Ferreira de Souza Vieira","doi":"10.1111/jfs.13160","DOIUrl":"https://doi.org/10.1111/jfs.13160","url":null,"abstract":"<div>\u0000 \u0000 <p>Agricultural byproducts, often discarded, possess significant nutritional value and technological potential. This study investigates the efficacy of ethanolic-water extracts from avocado (<i>Persea americana</i> Mill.) byproducts, obtained with minimal solvent use through optimized extraction, in enhancing the stability of mechanically separated meat-tambaqui (<i>Colossoma macropomum</i>) burgers, a high-fat Amazonian fish. 2000 ppm of avocado seed and peel extract were applied in shelf-life tests conducted under refrigeration and freezing conditions to evaluate the stability of the burgers. The results demonstrated that the bioactive compounds from avocado byproducts resulted in lower TBARS values, indicating strong antioxidant properties, reduced formation of volatile nitrogen compounds, and color maintenance than sodium erythorbate. Monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were preserved using bioactive ethanolic-water extracts, and the protein content was improved compared to the control, enhancing nutritional quality. This study highlights the potential of using agri-food byproducts, especially for application in highly perishable items such as fish, promoting the development of clean label products, thus supporting a more efficient and environmentally friendly food industry focusing on the circular economy.</p>\u0000 </div>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 5","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}