Manisha Singh, Sarah M Batt, Christian S C Canales, Fernando R Pavan, Sethu Arun Kumar, Handattu S Akshatha, Meduri Bhagyalalitha, Karthik G Pujar, Durgesh Bidye, Gurubasavaraj V Pujar, Gurdyal S Besra
{"title":"Novel hybrids of 1,2,3-triazole-benzoxazole: design, synthesis, and assessment of DprE1 enzyme inhibitors using fluorometric assay and computational analysis.","authors":"Manisha Singh, Sarah M Batt, Christian S C Canales, Fernando R Pavan, Sethu Arun Kumar, Handattu S Akshatha, Meduri Bhagyalalitha, Karthik G Pujar, Durgesh Bidye, Gurubasavaraj V Pujar, Gurdyal S Besra","doi":"10.1080/14756366.2024.2403744","DOIUrl":"10.1080/14756366.2024.2403744","url":null,"abstract":"<p><p>Decaprenylphosphoryl-β-D-ribose-oxidase (DprE1), a subunit of the essential decaprenylphosphoribose-2'-epimerase, plays a crucial role in the synthesis of cell wall arabinan components in mycobacteria, including the pathogen responsible for tuberculosis, <i>Mycobacterium tuberculosis</i>. In this study, we designed, synthesised, and evaluated 15 (BOK-1-BOK-10 and BOP-1-BOP-5) potential inhibitors of DprE1 from a series of 1,2,3-triazole ligands using a validated DprE1 inhibition assay. Two compounds, BOK-2 and BOK-3, demonstrated significant inhibition with IC<sub>50</sub> values of 2.2 ± 0.1 and 3.0 ± 0.6 μM, respectively, whereas the standard drug (TCA-1) showed inhibition at 3.0 ± 0.2 μM. Through molecular modelling and dynamic simulations, we explored the structural relationships between selected 1,2,3-triazole compounds and DprE1, revealing key features for effective drug-target interactions. This study introduces a novel approach for designing ligands against DprE1, offering a potential therapeutic strategy for tuberculosis treatment.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discovering a novel dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) inhibitor and its impact on tau phosphorylation and amyloid-β formation.","authors":"Huang-Ju Tu, Min-Wu Chao, Cheng-Chung Lee, Chao-Shiang Peng, Yi-Wen Wu, Tony Eight Lin, Yu-Wei Chang, Shih-Chung Yen, Kai-Cheng Hsu, Shiow-Lin Pan, Wei-Chun HuangFu","doi":"10.1080/14756366.2024.2418470","DOIUrl":"10.1080/14756366.2024.2418470","url":null,"abstract":"<p><p>Dual-specificity tyrosine-regulated kinase 1 A (DYRK1A) is crucial in neurogenesis, synaptogenesis, and neuronal functions. Its dysregulation is linked to neurodegenerative disorders like Down syndrome and Alzheimer's disease. Although the development of DYRK1A inhibitors has significantly advanced in recent years, the selectivity of these drugs remains a critical challenge, potentially impeding further progress. In this study, we utilised structure-based virtual screening (SBVS) from NCI library to discover novel DYRK1A inhibitors. The top-ranked compounds were then validated through enzymatic assays to assess their efficacy towards DYRK1A. Among them, NSC361563 emerged as a potent and selective DYRK1A inhibitor. It was shown to decrease tau phosphorylation at multiple sites, thereby enhancing tubulin stability. Moreover, NSC361563 diminished the formation of amyloid β and offered neuroprotective benefits against amyloid β-induced toxicity. Our research highlights the critical role of selective DYRK1A inhibitors in treating neurodegenerative diseases and presents a promising starting point for the development of targeted therapies.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Doaa Samaha,Sawsan Mahmoud,Mosaad Sayed Mohamed,Rokaia S Abdullah,Nageh A Abou Taleb,Tomohisa Nagamatsu,Hamed I Ali
{"title":"Novel alloxazine analogues: design, synthesis, and antitumour efficacy enhanced by kinase screening, molecular docking, and ADME studies.","authors":"Doaa Samaha,Sawsan Mahmoud,Mosaad Sayed Mohamed,Rokaia S Abdullah,Nageh A Abou Taleb,Tomohisa Nagamatsu,Hamed I Ali","doi":"10.1080/14756366.2024.2398551","DOIUrl":"https://doi.org/10.1080/14756366.2024.2398551","url":null,"abstract":"This study describes the development of novel alloxazine analogues as potent antitumor agents with enhanced selectivity for tumour cells. Twenty-nine out of 45 newly compounds were investigated in vitro for their growth inhibitory activities, against two human tumour cell lines, namely, the human T-cell acute lymphoblastoid leukaemia cell line (CCRF-HSB-2) and human oral epidermoid carcinoma cell line (KB), and the antitumor agent \"Ara-C\" was used as a positive reference in this investigation. Compounds 9e and 10J were the highest among their analogues, against both tumour cell lines (CCRF-HSB-2 and KB). Correlation analyses demonstrated a strong relationship between the IC50 values and AutoDock binding free energy or calculated inhibition (Ki). The study delves into structure-activity relationships (SARs) through advanced modelling tools integrated with structure-based drug design (SBDD) using GOLD 5.2.2, AutoDock 4.2, and Accelrys Discovery Studio 3.5. Physicochemical properties, pharmacokinetics, drug-likeness, and toxicity predictions of the most potent alloxazine derivatives were conducted using ProTox-II and Swiss ADME for effective antitumor agents with improved selectivity.","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mai S. El-Shoukrofy, Amal Atta, Salwa Fahmy, Dharmarajan Sriram, Michael G. Shehat, Ibrahim M. Labouta, Mona A. Mahran
{"title":"Challenging the Biginelli scaffold to surpass the first line antitubercular drugs: Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) inhibition activity and molecular modelling studies","authors":"Mai S. El-Shoukrofy, Amal Atta, Salwa Fahmy, Dharmarajan Sriram, Michael G. Shehat, Ibrahim M. Labouta, Mona A. Mahran","doi":"10.1080/14756366.2024.2386668","DOIUrl":"https://doi.org/10.1080/14756366.2024.2386668","url":null,"abstract":"New Biginelli adducts were rationalised, via the introduction of selected anti-tubercular (TB) pharmacophores into the dihydropyrimidine (DHPM) ring of deoxythymidine monophosphate (dTMP), the natu...","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinhao Liang,Jin Huang,Jianzhan Yang,Weihong Liang,Haoxiang Li,Yunshan Wu,Bo Liu
{"title":"Synthesis and in vitro evaluation of benzo[b]thiophene-3-carboxylic acid 1,1-dioxide derivatives as anticancer agents targeting the RhoA/ROCK pathway.","authors":"Jinhao Liang,Jin Huang,Jianzhan Yang,Weihong Liang,Haoxiang Li,Yunshan Wu,Bo Liu","doi":"10.1080/14756366.2024.2390911","DOIUrl":"https://doi.org/10.1080/14756366.2024.2390911","url":null,"abstract":"Rho family GTPases regulate cellular processes and promote tumour growth and metastasis; thus, RhoA is a potential target for tumour metastasis inhibition. However, limited progress has been made in the development of RhoA targeting anticancer drugs. Here, we synthesised benzo[b]thiophene-3-carboxylic acid 1,1-dioxide derivatives based on a covalent inhibitor of RhoA (DC-Rhoin), reported in our previous studies. The observed structure-activity relationship (contributed by carboxamide in C-3 and 1-methyl-1H-pyrazol in C-5) enhanced the anti-proliferative activity of the derivatives. Compound b19 significantly inhibited the proliferation, migration, and invasion of MDA-MB-231 cells and promoted their apoptosis. The suppression of myosin light chain phosphorylation and the formation of stress fibres confirmed the inhibitory activity of b19 via the RhoA/ROCK pathway. b19 exhibited a different binding pattern from DC-Rhoin, as observed in molecular docking analysis. This study provides a reference for the development of anticancer agents targeting the RhoA/ROCK pathway.","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jihyung Kim, Chang Gyun Im, Kyujin Oh, Ji Min Lee, Fatimah Al-Rubaye, K. Min
{"title":"Discovery of novel FGFR4 inhibitors through a build-up fragment strategy","authors":"Jihyung Kim, Chang Gyun Im, Kyujin Oh, Ji Min Lee, Fatimah Al-Rubaye, K. Min","doi":"10.1080/14756366.2024.2343350","DOIUrl":"https://doi.org/10.1080/14756366.2024.2343350","url":null,"abstract":"Abstract Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. FGFR4 has been implicated in HCC progression, making it a promising therapeutic target. We introduce an approach for identifying novel FGFR4 inhibitors by sequentially adding fragments to a common warhead unit. This strategy resulted in the discovery of a potent inhibitor, 4c, with an IC50 of 33 nM and high selectivity among members of the FGFR family. Although further optimisation is required, our approach demonstrated the potential for discovering potent FGFR4 inhibitors for HCC treatment, and provides a useful method for obtaining hit compounds from small fragments.","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140659191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Galvez-Llompart, Jesús Hierrezuelo, Mariluz Blasco, Riccardo Zanni, Jorge Galvez, A. de Vicente, A. Pérez-García, D. Romero
{"title":"Targeting bacterial growth in biofilm conditions: rational design of novel inhibitors to mitigate clinical and food contamination using QSAR","authors":"Maria Galvez-Llompart, Jesús Hierrezuelo, Mariluz Blasco, Riccardo Zanni, Jorge Galvez, A. de Vicente, A. Pérez-García, D. Romero","doi":"10.1080/14756366.2024.2330907","DOIUrl":"https://doi.org/10.1080/14756366.2024.2330907","url":null,"abstract":"Abstract Antimicrobial resistance (AMR) is a pressing global issue exacerbated by the abuse of antibiotics and the formation of bacterial biofilms, which cause up to 80% of human bacterial infections. This study presents a computational strategy to address AMR by developing three novel quantitative structure–activity relationship (QSAR) models based on molecular topology to identify potential anti-biofilm and antibacterial agents. The models aim to determine the chemo-topological pattern of Gram (+) antibacterial, Gram (−) antibacterial, and biofilm formation inhibition activity. The models were applied to the virtual screening of a commercial chemical database, resulting in the selection of 58 compounds. Subsequent in vitro assays showed that three of these compounds exhibited the most promising antibacterial activity, with potential applications in enhancing food and medical device safety.","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of the anticancer effects exerted by 5-fluorouracil and heme oxygenase-1 inhibitor hybrids in HTC116 colorectal cancer cells","authors":"Loredana Salerno, Antonietta Notaro, Valeria Consoli, Federica Affranchi, Valeria Pittalà, Valeria Sorrenti, Luca Vanella, Michela Giuliano, Sebastiano Intagliata","doi":"10.1080/14756366.2024.2337191","DOIUrl":"https://doi.org/10.1080/14756366.2024.2337191","url":null,"abstract":"Colon cancer remains a clinical challenge in industrialised countries. Its treatment with 5-Flurouracil (5-FU) develops many side effects and resistance. Thus, several strategies have been undertak...","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, carbonic anhydrase inhibition studies and modelling investigations of phthalimide–hydantoin hybrids","authors":"Morteza Abdoli, Alessandro Bonardi, Paola Gratteri, Claudiu T. Supuran, Raivis Žalubovskis","doi":"10.1080/14756366.2024.2335927","DOIUrl":"https://doi.org/10.1080/14756366.2024.2335927","url":null,"abstract":"A novel series of hydantoins incorporating phthalimides has been synthesised by condensation of activated phthalimides with 1-aminohydantoin and investigated for their inhibitory activity against a...","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Gan, Yuna Wu, Min Zhu, Bo Liu, Miaomiao Kong, Zixuan Xi, Ke Li, Haibao Wang, Tiande Su, Jiali Yao, Fatehi Khushafah, Baozhu Yi, Jiabing Wang, Wulan Li, Jianzhang Wu
{"title":"Design, synthesis, and evaluation of cyclic C7-bridged monocarbonyl curcumin analogs containing an o-methoxy phenyl group as potential agents against gastric cancer","authors":"Xin Gan, Yuna Wu, Min Zhu, Bo Liu, Miaomiao Kong, Zixuan Xi, Ke Li, Haibao Wang, Tiande Su, Jiali Yao, Fatehi Khushafah, Baozhu Yi, Jiabing Wang, Wulan Li, Jianzhang Wu","doi":"10.1080/14756366.2024.2314233","DOIUrl":"https://doi.org/10.1080/14756366.2024.2314233","url":null,"abstract":"The structure-activity relationship (SAR) between toxicity and the types of linking ketones of C7 bridged monocarbonyl curcumin analogs (MCAs) was not clear yet. In the pursuit of effective and les...","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}