Chalcones inhibit firefly bioluminescence dependent on A and B-ring substitution pattern - a structure-activity study combined with molecular docking.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Corinna Urmann, Michael Kirchinger, Herbert Riepl
{"title":"Chalcones inhibit firefly bioluminescence dependent on A and B-ring substitution pattern - a structure-activity study combined with molecular docking.","authors":"Corinna Urmann, Michael Kirchinger, Herbert Riepl","doi":"10.1080/14756366.2025.2509657","DOIUrl":null,"url":null,"abstract":"<p><p>Chalcones represent a privileged scaffold in medicinal chemistry, with pyranochalcones, featuring an additional chromane-like ring, identified as neurogenic and neuroprotective. Reporter gene assays, often used to study these and other effects, can produce false positives due to firefly luciferase stabilisation by inhibitors. The present study demonstrates that pyranochalcones inhibit firefly luciferase activity, with inhibition levels ranging from none to 100% and IC<sub>50</sub> values of 7.82 µM to 92.99 µM. Furthermore, molecular docking offers potential structure-based explanations for the observed selectivity of compounds towards firefly luciferase inhibition. Even slight modifications in the molecular structure lead to significant changes in luciferase inhibition, underscoring the importance of these findings for understanding structure-activity relationships in reporter gene assays. Accordingly, caution is advised when using reporter gene assays based on firefly luciferase and pyranochalcones, as the IC<sub>50</sub> values are within the range of concentrations commonly used in both <i>in vivo</i> and <i>in vitro</i> assays.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2509657"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2509657","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chalcones represent a privileged scaffold in medicinal chemistry, with pyranochalcones, featuring an additional chromane-like ring, identified as neurogenic and neuroprotective. Reporter gene assays, often used to study these and other effects, can produce false positives due to firefly luciferase stabilisation by inhibitors. The present study demonstrates that pyranochalcones inhibit firefly luciferase activity, with inhibition levels ranging from none to 100% and IC50 values of 7.82 µM to 92.99 µM. Furthermore, molecular docking offers potential structure-based explanations for the observed selectivity of compounds towards firefly luciferase inhibition. Even slight modifications in the molecular structure lead to significant changes in luciferase inhibition, underscoring the importance of these findings for understanding structure-activity relationships in reporter gene assays. Accordingly, caution is advised when using reporter gene assays based on firefly luciferase and pyranochalcones, as the IC50 values are within the range of concentrations commonly used in both in vivo and in vitro assays.

查尔酮抑制萤火虫生物发光依赖于A和b环取代模式-结合分子对接的结构-活性研究。
查尔酮在药物化学中是一种特殊的支架,吡查尔酮具有额外的铬样环,被认为是神经源性和神经保护性的。报告基因检测,通常用于研究这些和其他影响,可能产生假阳性,由于萤火虫荧光素酶的抑制剂稳定。本研究表明,吡查尔酮对萤火虫荧光素酶活性有抑制作用,抑制水平从0到100%不等,IC50值为7.82 µM至92.99 µM。此外,分子对接为观察到的化合物对萤火虫荧光素酶抑制的选择性提供了潜在的基于结构的解释。即使分子结构的轻微改变也会导致荧光素酶抑制的显著变化,强调了这些发现对于理解报告基因检测中结构-活性关系的重要性。因此,建议在使用基于萤火虫荧光素酶和吡查尔酮的报告基因检测时要谨慎,因为IC50值在体内和体外检测中常用的浓度范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信