Journal of Enzyme Inhibition and Medicinal Chemistry最新文献

筛选
英文 中文
Tetra-anionic porphyrin mimics protein-protein interactions between regulatory particles and the catalytic core, allosterically activating human 20S proteasome. 四阴离子卟啉模拟调节颗粒和催化核心之间的蛋白质相互作用,变构激活人20S蛋白酶体。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-04-07 DOI: 10.1080/14756366.2025.2482892
A M Santoro, M Persico, A D'Urso, A Cunsolo, O Tkachuk, D Milardi, R Purrello, G R Tundo, D Sbardella, P A Osmulski, M Gaczynska, M Coletta, C Fattorusso
{"title":"Tetra-anionic porphyrin mimics protein-protein interactions between regulatory particles and the catalytic core, allosterically activating human 20S proteasome.","authors":"A M Santoro, M Persico, A D'Urso, A Cunsolo, O Tkachuk, D Milardi, R Purrello, G R Tundo, D Sbardella, P A Osmulski, M Gaczynska, M Coletta, C Fattorusso","doi":"10.1080/14756366.2025.2482892","DOIUrl":"https://doi.org/10.1080/14756366.2025.2482892","url":null,"abstract":"<p><p>Decreased proteasome activity is a hallmark of brain and retinal neurodegenerative diseases (Alzheimer's, Parkinson's diseases, glaucoma) boosting the search for molecules acting as proteasome activators. Based on the hypothesis of an electrostatic key code driving catalytic core particle (20S) activation by regulatory particles (RPs), we identified the tetra-anionic meso-Tetrakis(4-sulphonatophenyl)-porphyrin (H2TPPS) as a new activator of human proteasome. By means of an integrated approach, including bioinformatics, enzymatic kinetic analysis, atomic force microscopy, and dynamic docking simulations, we show how binding of H2TPPS affects the closed/open conformational equilibrium of human 20S to ultimately promote substrate gate opening and proteolytic activity. These outcomes support our hypothesis and pave the way to the rational discovery of new proteasome allosteric modulators able to reproduce the key structural elements of regulatory particles responsible for catalytic activation.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2482892"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery of a selective and reversible LSD1 inhibitor with potent anticancer effects in vitro and in vivo. 发现一种选择性和可逆性的LSD1抑制剂,在体外和体内具有有效的抗癌作用。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-20 DOI: 10.1080/14756366.2025.2466093
Xiao-Song Zhang, Jin-Zhan Liu, Ying-Ying Mei, Meng Zhang, Li-Wei Sun
{"title":"Discovery of a selective and reversible LSD1 inhibitor with potent anticancer effects <i>in vitro</i> and <i>in vivo</i>.","authors":"Xiao-Song Zhang, Jin-Zhan Liu, Ying-Ying Mei, Meng Zhang, Li-Wei Sun","doi":"10.1080/14756366.2025.2466093","DOIUrl":"10.1080/14756366.2025.2466093","url":null,"abstract":"<p><p>Lysine-specific demethylase 1 (LSD1) is abnormally overexpressed in various tumour tissues of patients and has been an attractive anticancer target. In this work, a potent LSD1 inhibitor (compound <b>14</b>) was designed and synthesised by the molecular hybridisation strategy. It displays the potent antiproliferative activity against HepG2, HEP3B, HUH6, and HUH7 cells with IC<sub>50</sub> values of 0.93, 2.09, 1.43, and 4.37 μM, respectively. Furthermore, compound <b>14</b> is a selective and reversible LSD1 inhibitor with an IC<sub>50</sub> value of 0.18 μM and increases the methylation levels of H3K4me1/2. Molecular docking studies showed that it formed hydrogen bonds, hydrophilic interactions and hydrophobic interactions with residues of LSD1. Anticancer mechanisms demonstrated that it suppresses migration and epithelial-mesenchymal transition process in HepG2 cells. Importantly, it exhibits potent anti-liver cancer effects <i>in vivo</i> without obvious toxic effects. These interesting findings suggested that compound <b>14</b>, a novel LSD1 inhibitor, may be a promising therapeutic agent to treat liver cancer.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2466093"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fourth-generation EGFR-TKI to overcome C797S mutation: past, present, and future. 第四代EGFR-TKI克服C797S突变:过去,现在和未来
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-04-02 DOI: 10.1080/14756366.2025.2481392
Die Zhang, Jumei Zhao, Yue Yang, Qiangfang Dai, Ning Zhang, Zhikuan Mi, Qianqian Hu, Xiaolong Liu
{"title":"Fourth-generation EGFR-TKI to overcome C797S mutation: past, present, and future.","authors":"Die Zhang, Jumei Zhao, Yue Yang, Qiangfang Dai, Ning Zhang, Zhikuan Mi, Qianqian Hu, Xiaolong Liu","doi":"10.1080/14756366.2025.2481392","DOIUrl":"https://doi.org/10.1080/14756366.2025.2481392","url":null,"abstract":"<p><p>Overactivation of the epidermal growth factor receptor (EGFR) is prevalent in various tumours, rendering it a promising target for cancer therapy, particularly in the treatment of non-small cell lung cancer (NSCLC). Although the first through third generations of EGFR tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy, the emergence of drug resistance continues to pose a challenge. Current research is now focused on fourth-generation EGFR-TKIs, which specifically target the EGFR harbouring the C797S mutation. This review examines the design strategies, antitumor activity both <i>in vivo</i> and <i>in vitro</i>, binding modes, pharmacokinetics, as well as the advantages and disadvantages of each inhibitor, alongside the progress of clinical stage research related to fourth-generation inhibitors. Additionally, the review discusses future development directions for fourth-generation EGFR-TKIs, aiming to provide insights for successful research and development in this field.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2481392"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds. 探索SARS-CoV-2主要蛋白酶的共价抑制剂:从拟肽剂到新型支架。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-06 DOI: 10.1080/14756366.2025.2460045
Noor Atatreh, Radwa E Mahgoub, Mohammad A Ghattas
{"title":"Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds.","authors":"Noor Atatreh, Radwa E Mahgoub, Mohammad A Ghattas","doi":"10.1080/14756366.2025.2460045","DOIUrl":"10.1080/14756366.2025.2460045","url":null,"abstract":"<p><p>Peptidomimetic inhibitors mimic natural peptide substrates, employing electrophilic warheads to covalently interact with the catalytic Cys145 of M<sup>pro</sup>. Examples include aldehydes, α-ketoamides, and aza-peptides, with discussions on their mechanisms of action, potency, and structural insights. Non-peptidomimetic inhibitors utilise diverse scaffolds and mechanisms, achieving covalent modification of M<sup>pro</sup>.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2460045"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroptosis and hearing loss: from molecular mechanisms to therapeutic interventions. 下垂铁与听力损失:从分子机制到治疗干预。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-24 DOI: 10.1080/14756366.2025.2468853
Xingyi Lv, Chenyi Yang, Xianying Li, Yun Liu, Yu Yang, Tongyan Jin, Zhijian Chen, Jinjing Jia, Min Wang, Li Li
{"title":"Ferroptosis and hearing loss: from molecular mechanisms to therapeutic interventions.","authors":"Xingyi Lv, Chenyi Yang, Xianying Li, Yun Liu, Yu Yang, Tongyan Jin, Zhijian Chen, Jinjing Jia, Min Wang, Li Li","doi":"10.1080/14756366.2025.2468853","DOIUrl":"10.1080/14756366.2025.2468853","url":null,"abstract":"<p><p>Hearing loss profoundly affects social engagement, mental health, cognition, and brain development, with sensorineural hearing loss (SNHL) being a major concern. Linked to ototoxic medications, ageing, and noise exposure, SNHL presents significant treatment challenges, highlighting the need for effective prevention and regeneration strategies. Ferroptosis, a distinct form of cell death featuring iron-dependent lipid peroxidation, has garnered interest due to its potential role in cancer, ageing, and neuronal degeneration, especially hearing loss. The emerging role of ferroptosis as a crucial mediator in SNHL suggests that it may offer a novel therapeutic target for otoprotection. This review aims to summarise the intricate connection between ferroptosis and SNHL, offering a fresh perspective for exploring targeted therapeutic strategies that could potentially mitigate cochlear cells damage and enhance the quality of life for individuals with hearing impairments.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2468853"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of ketobenzothiazole-based peptidomimetic TMPRSS13 inhibitors with low nanomolar potency. 低纳摩尔效度酮苯并噻唑类肽类TMPRSS13抑制剂的研制。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-20 DOI: 10.1080/14756366.2025.2466841
Alexandre Joushomme, Antoine Désilets, William Champagne, Malihe Hassanzadeh, Gabriel Lemieux, Alice Gravel-Trudeau, Matthieu Lepage, Sabrina Lafrenière, Ulrike Froehlich, Karin List, Pierre-Luc Boudreault, Richard Leduc
{"title":"Development of ketobenzothiazole-based peptidomimetic TMPRSS13 inhibitors with low nanomolar potency.","authors":"Alexandre Joushomme, Antoine Désilets, William Champagne, Malihe Hassanzadeh, Gabriel Lemieux, Alice Gravel-Trudeau, Matthieu Lepage, Sabrina Lafrenière, Ulrike Froehlich, Karin List, Pierre-Luc Boudreault, Richard Leduc","doi":"10.1080/14756366.2025.2466841","DOIUrl":"10.1080/14756366.2025.2466841","url":null,"abstract":"<p><p>TMPRSS13, a member of the Type II Transmembrane Serine Proteases (TTSP) family, is involved in cancer progression and in respiratory virus cell entry. To date, no inhibitors have been specifically developed for this protease. In this study, a chemical library of 65 ketobenzothiazole-based peptidomimetic molecules was screened against a proteolytically active form of recombinant TMPRSS13 to identify novel inhibitors. Following an initial round of screening, subsequent synthesis of additional derivatives supported by molecular modelling revealed important molecular determinants involved in TMPRSS13 inhibition. One inhibitor, N-0430, achieved low nanomolar affinity towards TMPRSS13 activity in a cellular context. Using a SARS-CoV-2 pseudovirus cell entry model, we further demonstrated the ability of N-0430 to block TMPRSS13-dependent entry of the pseudovirus. The identified peptidomimetic inhibitors and the molecular insights into their potency gained from this study will aid in the development of specific TMPRSS13 inhibitors.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2466841"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of novel inhibitors of dengue viral NS5 RNA-dependent RNA polymerase through molecular docking, biological activity evaluation and molecular dynamics simulations. 通过分子对接、生物活性评价和分子动力学模拟鉴定登革病毒NS5 RNA依赖RNA聚合酶的新型抑制剂
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-12 DOI: 10.1080/14756366.2025.2463006
Keli Zong, Chaochun Wei, Wei Li, Cong Wang, Jiajun Ruan, Xiaojing Liu, Susu Zhang, Hong Yan, Ruiyuan Cao, Xingzhou Li
{"title":"Identification of novel inhibitors of dengue viral NS5 RNA-dependent RNA polymerase through molecular docking, biological activity evaluation and molecular dynamics simulations.","authors":"Keli Zong, Chaochun Wei, Wei Li, Cong Wang, Jiajun Ruan, Xiaojing Liu, Susu Zhang, Hong Yan, Ruiyuan Cao, Xingzhou Li","doi":"10.1080/14756366.2025.2463006","DOIUrl":"10.1080/14756366.2025.2463006","url":null,"abstract":"<p><p>The DENV-NS5 RNA-dependent RNA polymerase (RdRp) is essential for viral replication, and one of the targets of anti-virus. In this study, the Uni-VSW module was used to virtual screen 1.6 million compounds in the ChemDiv and TargetMol (USA) database, 27 candidates were obtained. Thereby 23 candidates were selected based on their binding free energies by 50 ns MD simulations. The biological activity of the candidates and the reference compounds (<b>BCX4430</b> and <b>Compound 27</b>) were evaluated on their IC<sub>50</sub> values against DENV-NGC, CC<sub>50</sub> values, and selectivity index. Among these, the IC<sub>50</sub> values of <b>D1</b> and <b>D8</b> were 13.06 ± 1.17 μM and 14.79 ± 7.76 μM, respectively, which were better than that of <b>Compound 27</b> (IC<sub>50</sub> =19.67 ± 1.12 μM). The comprehensive MD simulations were performed on the candidates to assess the stability behaviour and binding mechanisms. The density functional theory (DFT) analysis was also conducted to explore the structural and electronic properties.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2463006"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactivity profiling of Sanghuangporus lonicerinus: antioxidant, hypoglycaemic, and anticancer potential via in-vitro and in-silico approaches. 桑黄孢的生物活性分析:通过体外和计算机方法的抗氧化、降糖和抗癌潜力。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-24 DOI: 10.1080/14756366.2025.2461185
Yusufjon Gafforov, Sofija Bekić, Manzura Yarasheva, Jovana Mišković, Nemanja Živanović, Jia Jia Chen, Edward Petri, Bekhzod Abdullaev, Sylvie Rapior, Young Won Lim, Ikram Abdullaev, Arshad Mehmood Abbasi, Soumya Ghosh, Wan Abd Al Qadr Imad Wan-Mohtar, Milena Rašeta
{"title":"Bioactivity profiling of <i>Sanghuangporus lonicerinus</i>: antioxidant, hypoglycaemic, and anticancer potential via <i>in-vitro</i> and <i>in-silico</i> approaches.","authors":"Yusufjon Gafforov, Sofija Bekić, Manzura Yarasheva, Jovana Mišković, Nemanja Živanović, Jia Jia Chen, Edward Petri, Bekhzod Abdullaev, Sylvie Rapior, Young Won Lim, Ikram Abdullaev, Arshad Mehmood Abbasi, Soumya Ghosh, Wan Abd Al Qadr Imad Wan-Mohtar, Milena Rašeta","doi":"10.1080/14756366.2025.2461185","DOIUrl":"10.1080/14756366.2025.2461185","url":null,"abstract":"<p><p>This study investigates the mycochemical profile and biological activities of hydroethanolic (EtOH), chloroform (CHCl<sub>3</sub>), and hot water (H<sub>2</sub>O) extracts of <i>Sanghuangporus lonicerinus</i> from Uzbekistan. Antioxidant capacity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), NO, and FRAP assays, and <i>in vitro</i> hypoglycaemic effects were evaluated through α-amylase and α-glucosidase inhibition. Antiproliferative potential was explored by analysing the binding affinities of EtOH and H<sub>2</sub>O extracts to estrogen receptor α (ERα), ERβ, androgen receptor (AR), and glucocorticoid receptor (GR), with molecular docking providing structural insights. LC-MS/MS analysis revealed solvent-dependent phenolic profiles, with the EtOH extract containing the highest total phenolic content (143.15 ± 6.70 mg GAE/g d.w.) and the best antioxidant capacity. The EtOH extract showed significant hypoglycaemic effects, with 85.29 ± 5.58% inhibition of α-glucosidase and 41.21 ± 0.79% inhibition of α-amylase. Moderate ERβ binding suggests potential for estrogen-mediated cancer therapy, while strong AKR1C3 inhibition by the EtOH extract supports its therapeutic potential.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2461185"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143483233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical composition, antioxidant activities, and enzyme inhibitory effects of Lespedeza bicolour Turcz. essential oil. 胡枝子的化学成分、抗氧化活性及酶抑制作用。精油。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-06 DOI: 10.1080/14756366.2025.2460053
Jiadong Zhu, Ziyue Xu, Xu Liu
{"title":"Chemical composition, antioxidant activities, and enzyme inhibitory effects of <i>Lespedeza bicolour</i> Turcz. essential oil.","authors":"Jiadong Zhu, Ziyue Xu, Xu Liu","doi":"10.1080/14756366.2025.2460053","DOIUrl":"10.1080/14756366.2025.2460053","url":null,"abstract":"<p><p><i>Lespedeza bicolour</i> Turcz. is a traditional medicinal plant with a wide range of ethnomedicinal values. The main components of <i>L. bicolour</i> essential oil (EO) were β-pinene (15.41%), β-phellandrene (12.43%), and caryophyllene (7.79%). The EO of <i>L. bicolour</i> showed antioxidant activity against ABTS radical and DPPH radical with an IC<sub>50</sub> value of 0.69 ± 0.03 mg/mL and 10.44 ± 2.09 mg/mL, respectively. The FRAP antioxidant value was 81.96 ± 6.17 μmol/g. The EO had activities against acetylcholinesterase, α-glucosidase, and β-lactamase with IC<sub>50</sub> values of 309.30 ± 11.16 μg/mL, 360.47 ± 35.67 μg/mL, and 27.54 ± 1.21 μg/mL, respectively. Molecular docking showed methyl dehydroabietate docked well with all tested enzymes. Sclareol and (+)-borneol acetate showed the strongest binding affinity to α-glucosidase and β-lactamase, respectively. The present study provides a direction for searching enzyme inhibitors for three tested enzymes and shows <i>L. bicolour</i> EO possesses the potential to treat a series of diseases.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2460053"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a novel pyrrolo[2,3-b]pyridine compound as a potent glycogen synthase kinase 3β inhibitor for treating Alzheimer's disease. 一种新型吡咯[2,3-b]吡啶化合物作为治疗阿尔茨海默病的糖原合成酶激酶3β抑制剂的鉴定。
IF 5.6 2区 医学
Journal of Enzyme Inhibition and Medicinal Chemistry Pub Date : 2025-12-01 Epub Date: 2025-02-20 DOI: 10.1080/14756366.2025.2466846
Qing-Qing Xun, Jing Zhang, Lei Feng, Yu-Ying Ma, Ying Li, Xiao-Long Shi
{"title":"Identification of a novel pyrrolo[2,3-<i>b</i>]pyridine compound as a potent glycogen synthase kinase 3β inhibitor for treating Alzheimer's disease.","authors":"Qing-Qing Xun, Jing Zhang, Lei Feng, Yu-Ying Ma, Ying Li, Xiao-Long Shi","doi":"10.1080/14756366.2025.2466846","DOIUrl":"10.1080/14756366.2025.2466846","url":null,"abstract":"<p><p>Herein, a novel pyrrolo[2,3-<i>b</i>]pyridine-based glycogen synthase kinase 3β (GSK-3β) inhibitor, <b>S01</b>, was rationally designed and synthesised to target Alzheimer's disease (AD). <b>S01</b> inhibited GSK-3β, with an IC<sub>50</sub> of 0.35 ± 0.06 nM, and had an acceptable kinase selectivity for 24 structurally similar kinases. Western blotting assays indicated that <b>S01</b> efficiently increased the expression of p-GSK-3β-Ser9 and decreased p-tau-Ser396 levels in a dose-dependent manner. In vitro cell experiments, <b>S01</b> showed low cytotoxicity to SH-SY5Y cells, significantly upregulated the expression of β-catenin and neurogenesis-related biomarkers, and effectively promoted the outgrowth of differentiated neuronal neurites. Moreover, <b>S01</b> substantially ameliorated dyskinesia in AlCl<sub>3</sub>-induced zebrafish AD models at a concentration of 0.12 μM, which was more potent than Donepezil (8 μM) under identical conditions. Acute toxicity experiments further confirmed the safety of <b>S01</b> in vivo. Our findings suggested that <b>S01</b> is a prospective GSK-3β inhibitor and can be tested as a candidate for treating AD.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2466846"},"PeriodicalIF":5.6,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信