Journal of Functional Biomaterials最新文献

筛选
英文 中文
Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration. 随机临床试验:骨生物活性液能改善种植体的稳定性和骨结合。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-10-01 DOI: 10.3390/jfb15100293
Ashraf Al Madhoun, Khaled Meshal, Neus Carrió, Eduard Ferrés-Amat, Elvira Ferrés-Amat, Miguel Barajas, Ana Leticia Jiménez-Escobar, Areej Said Al-Madhoun, Alaa Saber, Yazan Abou Alsamen, Carles Marti, Maher Atari
{"title":"Randomized Clinical Trial: Bone Bioactive Liquid Improves Implant Stability and Osseointegration.","authors":"Ashraf Al Madhoun, Khaled Meshal, Neus Carrió, Eduard Ferrés-Amat, Elvira Ferrés-Amat, Miguel Barajas, Ana Leticia Jiménez-Escobar, Areej Said Al-Madhoun, Alaa Saber, Yazan Abou Alsamen, Carles Marti, Maher Atari","doi":"10.3390/jfb15100293","DOIUrl":"https://doi.org/10.3390/jfb15100293","url":null,"abstract":"<p><p>Implant stability can be compromised by factors such as inadequate bone quality and infection, leading to potential implant failure. Ensuring implant stability and longevity is crucial for patient satisfaction and quality of life. In this multicenter, randomized, double-blind clinical trial, we assessed the impact of a bone bioactive liquid (BBL) on the Galaxy TS implant's performance, stability, and osseointegration. We evaluated the impact stability, osseointegration, and pain levels using initial stability quotient (ISQ) measurements, CBCT scans, and pain assessment post-surgery. Surface analysis was performed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). In vitro studies examined the BBL's effects on dental pulp pluripotent stem cells' (DPPSCs') osteogenesis and inflammation modulation in human macrophages. All implants successfully osseointegrated, as demonstrated by the results of our clinical and histological studies. The BBL-treated implants showed significantly lower pain scores by day 7 (<i>p</i> < 0.00001) and improved stability by day 30 (ISQ > 62.00 ± 0.59, <i>p</i> < 8 × 10<sup>-7</sup>). By day 60, CBCT scans revealed an increased bone area ratio in BBL-treated implants. AFM images demonstrated the BBL's softening and wettability effect on implant surfaces. Furthermore, the BBL promoted DPPSCs' osteogenesis and modulated inflammatory markers in human primary macrophages. This study presents compelling clinical and biological evidence that BBL treatment improves Galaxy TS implant stability, reduces pain, and enhances bone formation, possibly through surface tension modulation and immunomodulatory effects. This advancement holds promise for enhancing patient outcomes and implant longevity.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Erosive Media on the Mechanical Properties of CAD/CAM Composite Materials. 腐蚀介质对 CAD/CAM 复合材料机械性能的影响。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-10-01 DOI: 10.3390/jfb15100292
Marwa M Alnsour, Rasha A Alamoush, Nikolaos Silikas, Julian D Satterthwaite
{"title":"The Effect of Erosive Media on the Mechanical Properties of CAD/CAM Composite Materials.","authors":"Marwa M Alnsour, Rasha A Alamoush, Nikolaos Silikas, Julian D Satterthwaite","doi":"10.3390/jfb15100292","DOIUrl":"https://doi.org/10.3390/jfb15100292","url":null,"abstract":"<p><p>This study aimed to investigate the effect of acidic media storage (gastric acid and Coca-Cola) on the mechanical properties of CAD/CAM materials. Three types of materials were tested: a polymer-infiltrated ceramic network (PICN) (Vita Enamic (En), VITA Zahnfabrik, Germany), a resin composite block (RCB) (Cerasmart (Cs), GC Corp, Japan), and a conventional resin-based composite (Gradia direct (Gr), GC Corp, Japan), which was used as a control. Beam-shaped specimens of each material, with dimensions of 16 mm × 4 mm × 1.5 mm, were prepared (90 in total). The specimens were divided into subgroups (10 each) and stored for 96 h in either gastric acid, Coca-Cola, or distilled water. Flexural strength and elastic modulus were evaluated using a three-point flexural strength test with acoustic emission (AE) monitoring. Vickers microhardness was measured before and after storage in gastric acid and Coca-Cola. Data were statistically analysed using two-way and one-way ANOVA, the Tukey's post hoc, and independent <i>t</i>-test at a significance level of 0.05. The results showed that Cs and En maintained their flexural strength and elastic modulus after acidic media exposure, while Gr experienced a significant decrease in flexural strength following gastric acid storage (<i>p</i> < 0.01). Initial crack detection was not possible using the AE system, impacting the determination of flexural strength. Exposure to acidic media decreased all materials' microhardness, with Gr showing the most notable reduction (<i>p</i> < 0.0001). Gastric acid had a greater impact on the microhardness of all tested materials compared to Coca-Cola (<i>p</i> < 0.0001). In conclusion, storage in erosive media did not notably affect the flexural strength or elastic modulus of CAD/CAM composites but it did affect hardness. CAD/CAM composite blocks demonstrated superior mechanical properties compared to the conventional composite.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508220/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation, Mechanical Properties, and Degradation Behavior of Zn-1Fe-xSr Alloys for Biomedical Applications. 用于生物医学应用的 Zn-1Fe-xSr 合金的制备、机械性能和降解行为。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-30 DOI: 10.3390/jfb15100289
Wen Peng, Zehang Lu, Enyang Liu, Wenteng Wu, Sirong Yu, Jie Sun
{"title":"Preparation, Mechanical Properties, and Degradation Behavior of Zn-1Fe-<i>x</i>Sr Alloys for Biomedical Applications.","authors":"Wen Peng, Zehang Lu, Enyang Liu, Wenteng Wu, Sirong Yu, Jie Sun","doi":"10.3390/jfb15100289","DOIUrl":"https://doi.org/10.3390/jfb15100289","url":null,"abstract":"<p><p>As biodegradable materials, zinc (Zn) and zinc-based alloys have attracted wide attention owing to their great potential in biomedical applications. However, the poor strength of pure Zn and binary Zn alloys limits their wide application. In this work, a stir casting method was used to prepare the Zn-1Fe-<i>x</i>Sr (<i>x</i> = 0.5, 1, 1.5, 2 wt.%) ternary alloys, and the phase composition, microstructure, tensile properties, hardness, and degradation behavior were studied. The results indicated that the SrZn<sub>13</sub> phase was generated in the Zn matrix when the Sr element was added, and the grain size of Zn-1Fe-<i>x</i>Sr alloy decreased with the increase in Sr content. The ultimate tensile strength (UTS) and Brinell hardness increased with the increase in Sr content. The UTS and hardness of Zn-1Fe-2Sr alloy were 141.65 MPa and 87.69 HBW, which were 55.7% and 58.4% higher than those of Zn-1Fe alloy, respectively. As the Sr content increased, the corrosion current density of Zn-1Fe-<i>x</i>Sr alloy increased, and the charge transfer resistance decreased significantly. Zn-1Fe-2Sr alloy had a degradation rate of 0.157 mg·cm<sup>-2</sup>·d<sup>-1</sup>, which was 118.1% higher than the degradation rate of Zn-1Fe alloy. Moreover, the degradation rate of Zn-1Fe-<i>x</i>Sr alloy decreased significantly with the increase in immersion time.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review. 将纳米金粒子融入牙科生物材料是促进临床发展的新方法:叙述性综述。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-30 DOI: 10.3390/jfb15100291
Saharat Jongrungsomran, Dakrong Pissuwan, Apichai Yavirach, Chaiy Rungsiyakull, Pimduen Rungsiyakull
{"title":"The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review.","authors":"Saharat Jongrungsomran, Dakrong Pissuwan, Apichai Yavirach, Chaiy Rungsiyakull, Pimduen Rungsiyakull","doi":"10.3390/jfb15100291","DOIUrl":"https://doi.org/10.3390/jfb15100291","url":null,"abstract":"<p><p>Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, including titanium, polymethylmethacrylate (PMMA) and resin composites. This review aims to summarize the advancements in the application of modified AuNPs in dental materials and to assess their effects on related cellular processes in the dental field. Relevant articles published in English on AuNPs in association with dental materials were identified through a systematic search of the PubMed/MEDLINE, Embase, Scopus and ScienceDirect databases from January 2014 to April 2024. Future prospects for the utilization of AuNPs in the field of dentistry are surveyed.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Immich et al. Evaluation of Antimicrobial Properties, Cell Viability, and Metalloproteinase Activity of Bioceramic Endodontic Materials Used in Vital Pulp Therapy. J. Funct. Biomater. 2024, 15, 70. 更正:Immich等人.评估活力牙髓疗法中使用的生物陶瓷牙髓材料的抗菌特性、细胞活力和金属蛋白酶活性.J. Funct.Biomater.2024, 15, 70.
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-30 DOI: 10.3390/jfb15100290
Felipe Immich, Durvalino de Oliveira, Juliana Silva Ribeiro de Andrade, Andressa da Silva Barboza, Carlos Enrique Cuevas-Suárez, Adriana Fernandes da Silva, Wellington Luiz de Oliveira da Rosa, Álvaro Henrique Borges, Neftali Lenin Villarreal Carreno, Evandro Piva, Rafael Guerra Lund
{"title":"Correction: Immich et al. Evaluation of Antimicrobial Properties, Cell Viability, and Metalloproteinase Activity of Bioceramic Endodontic Materials Used in Vital Pulp Therapy. <i>J. Funct. Biomater.</i> 2024, <i>15</i>, 70.","authors":"Felipe Immich, Durvalino de Oliveira, Juliana Silva Ribeiro de Andrade, Andressa da Silva Barboza, Carlos Enrique Cuevas-Suárez, Adriana Fernandes da Silva, Wellington Luiz de Oliveira da Rosa, Álvaro Henrique Borges, Neftali Lenin Villarreal Carreno, Evandro Piva, Rafael Guerra Lund","doi":"10.3390/jfb15100290","DOIUrl":"https://doi.org/10.3390/jfb15100290","url":null,"abstract":"<p><p><b>Error in Figure 3</b> [...].</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of the Peri-Implant Tissues of Patients with Severe Bone Atrophy Treated with a New Short and Extra-Short Implant System-A Pilot Study. 使用新型短型和超短型种植体系统治疗严重骨质萎缩患者的种植体周围组织评估--一项试点研究。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-29 DOI: 10.3390/jfb15100288
Kely Cristina de Moraes, Geninho Thomé, Flávia Noemy Gasparini Kiatake Fontão, Carolina Accorsi Cartelli, Rosemary Adriana Chierici Marcantonio, Carolina Mendonça de Almeida Malzoni, Elcio Marcantonio Junior
{"title":"Evaluation of the Peri-Implant Tissues of Patients with Severe Bone Atrophy Treated with a New Short and Extra-Short Implant System-A Pilot Study.","authors":"Kely Cristina de Moraes, Geninho Thomé, Flávia Noemy Gasparini Kiatake Fontão, Carolina Accorsi Cartelli, Rosemary Adriana Chierici Marcantonio, Carolina Mendonça de Almeida Malzoni, Elcio Marcantonio Junior","doi":"10.3390/jfb15100288","DOIUrl":"https://doi.org/10.3390/jfb15100288","url":null,"abstract":"<p><p>This study aimed to assess clinical and radiographic outcomes, including implant survival, marginal bone loss, and patient satisfaction, in individuals with severe bone atrophy treated using a newly developed system of short and extra-short implants. A total of 44 implants (37 short and 7 extra-short) were placed with immediate loading in 11 patients. The patients were followed up at between 6 and 24 months. Bone changes, keratinized mucosa, bleeding on probing, probing depth, crown-to-implant ratio, and patient satisfaction were evaluated. An implant survival and success rate of 100% was observed. The peri-implant bone condition showed no significant associations between marginal bone loss (MBL) and gingival recession. In extra-short implants, the crown-to-implant ratio did not affect MBL in the evaluated times. However, short implants showed a statistically significant inverse correlation between mesial measurement and crown-to-implant ratio (<i>p</i> = 0.006) and between distal measurement and crown-to-implant ratio (<i>p</i> = 0.004) over six months. Plaque was present in the mesiobuccal regions in 38.64% of the implants, with extra-short implants having the highest relative frequency (71.4%). Bleeding was observed in 18.9% of the short implants in the mesiolingual region and 14.3% of the extra-short implants. There was a statistically significant association between bleeding on probing in the mesiobuccal region and the type of implant (<i>p</i> = 0.026). The analysis of probing depth showed no difference between the types of implants. Within the limits of this study, short and extra-short implants presented similar clinical and radiographic behavior of soft and hard tissues in the evaluated times.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System. 基于壳聚糖/丙酮/琼脂糖非共价水凝胶的抗菌生物复合材料:藻酸/四环素珠系统的可控药物输送
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-28 DOI: 10.3390/jfb15100286
Hossein Abdollahi, Saber Amiri, Farzaneh Amiri, Somayeh Moradi, Payam Zarrintaj
{"title":"Antibacterial Biocomposite Based on Chitosan/Pluronic/Agarose Noncovalent Hydrogel: Controlled Drug Delivery by Alginate/Tetracycline Beads System.","authors":"Hossein Abdollahi, Saber Amiri, Farzaneh Amiri, Somayeh Moradi, Payam Zarrintaj","doi":"10.3390/jfb15100286","DOIUrl":"https://doi.org/10.3390/jfb15100286","url":null,"abstract":"<p><p>Designing a wound dressing with controlled uptake, antibacterial, and proper biocompatibility is crucial for the appropriate wound healing process. In this study, alginate/tetracycline (Alg/TC) beads were produced and embedded into chitosan/pluronic/agarose semi-interpenetrating polymer network hydrogel, which serves as a potential biocompatible dressing for treating skin wounds. The effect of pluronic content on the porosity, swelling, mechanical characteristics, and degradation of the hydrogel was investigated. Furthermore, the impact of Alg beads on TC release was subsequently examined. In the absence of Alg beads, faster release was observed. However, after incorporating beads into the hydrogels, the release was sustained. Particularly, the hydrogel containing Alg beads exhibited a nearly linear release, reaching 74% after 2 days in acidic media. The antimicrobial activity and biocompatibility of the hydrogel were also evaluated to assess the capability of the TC-loaded hydrogels for wound dressing applications. The hydrogel demonstrated efficient antibacterial features against Gram-positive and Gram-negative bacteria. Additionally, the sample behavior was evaluated against exposure to yeast. Furthermore, based on biocompatibility studies using HFF2 cells, the TC-loaded hydrogel exhibited remarkable biocompatibility. Overall, this novel composite hydrogel shows remarkable biocompatibility and antibacterial activities which can be used as a great potential wound dressing to prevent wound infections due to its effective inhibition of bacterial growth.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemically Pretreated Densification of Juniper Wood for Potential Use in Osteosynthesis Bone Implants. 化学预处理桧木致密化,用于骨合成骨植入物的潜力。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-28 DOI: 10.3390/jfb15100287
Laura Andze, Vadims Nefjodovs, Martins Andzs, Marite Skute, Juris Zoldners, Martins Kapickis, Arita Dubnika, Janis Locs, Janis Vetra
{"title":"Chemically Pretreated Densification of Juniper Wood for Potential Use in Osteosynthesis Bone Implants.","authors":"Laura Andze, Vadims Nefjodovs, Martins Andzs, Marite Skute, Juris Zoldners, Martins Kapickis, Arita Dubnika, Janis Locs, Janis Vetra","doi":"10.3390/jfb15100287","DOIUrl":"https://doi.org/10.3390/jfb15100287","url":null,"abstract":"<p><p>The aim of the study was to perform treatment of juniper wood to obtain wood material with a density and mechanical properties comparable to bone, thus producing a potential material for use in osteosynthesis bone implants. In the first step, partial delignification of wood sample was obtained by Kraft cooking. The second step was extraction with ethanol, ethanol-water mixture, saline, and water to prevent the release of soluble compounds and increase biocompatibility. In the last step, the thermal densification at 100 °C for 24 h was implemented. The results obtained in the dry state are equivalent to the properties of bone. The swelling of chemically pre-treated densified wood was reduced compared to chemically untreated densified wood. Samples showed no cytotoxicity by in vitro cell assays. The results of the study showed that it is possible to obtain noncytotoxic wood samples with mechanical properties equivalent to bones by partial delignification, extraction, and densification. However, further research is needed to ensure the material's shape stability, water resistance, and reduced swelling.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY (CLARITY). 用于放射治疗成像和治疗的可定制冻干制剂(CLARITY)。
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-27 DOI: 10.3390/jfb15100285
Michele Moreau, Debarghya China, Gnagna Sy, Kai Ding, Wilfred Ngwa
{"title":"Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY (CLARITY).","authors":"Michele Moreau, Debarghya China, Gnagna Sy, Kai Ding, Wilfred Ngwa","doi":"10.3390/jfb15100285","DOIUrl":"https://doi.org/10.3390/jfb15100285","url":null,"abstract":"<p><p>Smart radiotherapy biomaterials (SRBs) include seed and liquid biomaterials designed to be employed as fiducial markers during radiotherapy while also delivering therapeutic drug payloads to enhance treatment outcomes. In this study, we investigate a novel Customizable Lyophilized Agent for Radiotherapy Imaging and TherapY (CLARITY) biomaterial, which can be loaded with immunoadjuvants (anti-CD40 monoclonal antibody or Caflanone (FBL-03G)) at the point of care. The CLARITY biomaterial was investigated in an animal model of pancreatic cancer using C57BL6 mice. Mice were imaged before and at different points of time post-treatment to evaluate the potential of CLARITY biomaterial to provide imaging contrast similar to fiducials. This study also used cadavers to assess CLARITY's potential to provide imaging contrast in humans. Results showed imaging contrast from computed tomography (CT) and magnetic resonance imaging (MRI) modalities for up to 30 days post-treatment, demonstrating potential for use as fiducials. A significant increase in survival (<i>***</i>, <i>p</i> = 0.0006) was observed for mice treated with CLARITY biomaterial loaded with immunoadjuvant for up to 10 weeks post-treatment compared to those without treatment. These initial results demonstrate the potential of CLARITY biomaterial to serve as a smart multifunctional radiotherapy biomaterial and provide the impetus for further development and optimization as a point-of-care technology for combination radiotherapy and immunotherapy.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Effects of BSA-Coated Gold Nanorods on Cell Migration Potential and Inflammatory Mediators in Human Dermal Fibroblasts. 评估 BSA 涂层金纳米棒对人真皮成纤维细胞的细胞迁移潜能和炎症介质的影响
IF 5 3区 医学
Journal of Functional Biomaterials Pub Date : 2024-09-26 DOI: 10.3390/jfb15100284
Nouf N Mahmoud, Ayat S Hammad, Alaya S Al Kaabi, Hend H Alawi, Summaiya Khatoon, Maha Al-Asmakh
{"title":"Evaluating the Effects of BSA-Coated Gold Nanorods on Cell Migration Potential and Inflammatory Mediators in Human Dermal Fibroblasts.","authors":"Nouf N Mahmoud, Ayat S Hammad, Alaya S Al Kaabi, Hend H Alawi, Summaiya Khatoon, Maha Al-Asmakh","doi":"10.3390/jfb15100284","DOIUrl":"https://doi.org/10.3390/jfb15100284","url":null,"abstract":"<p><p>Albumin-coated gold nanoparticles display potential biomedical applications, including cancer research, infection treatment, and wound healing; however, elucidating their interaction with normal cells remains an area with limited exploration. In this study, gold nanorods (GNR) were prepared and coated with bovine serum albumin (BSA) to produce GNR-BSA. The functionalized nanoparticles were characterized based on their optical absorption spectra, morphology, surface charge, and quantity of attached protein. The interaction between GNR-BSA and BSA with normal cells was investigated using human dermal fibroblasts. The cytotoxicity test indicated cell viability between ~63-95% for GNR-BSA over concentrations from 30.0 to 0.47 μg/mL and ~85-98% for BSA over concentrations from 4.0 to 0.0625 mg/mL. The impact of the GNR-BSA and BSA on cell migration potential and wound healing was assessed using scratch assay, and the modulation of cytokine release was explored by quantifying a panel of cytokines using Multiplex technology. The results indicated that GNR-BSA, at 10 μg/mL, delayed the cell migration and wound healing 24 h post-treatment compared to the BSA or the control group with an average wound closure percentage of 6% and 16% at 6 and 24 h post-treatment, respectively. Multiplex analysis revealed that while GNR-BSA reduced the release of the pro-inflammatory marker IL-12 from the activated fibroblasts 24 h post-treatment, they significantly reduced the release of IL-8 (<i>p</i> < 0.001), and CCL2 (<i>p</i> < 0.01), which are crucial for the inflammation response, cell adhesion, proliferation, migration, and angiogenesis. Although GNR-BSA exhibited relatively high cell viability towards human dermal fibroblasts and promising therapeutic applications, toxicity aspects related to cell motility and migration must be considered.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信