{"title":"Experimental determination of L-subshells x-ray yields and production cross sections of thick lead (Z=82) element by impact of 15–30 keV electrons","authors":"Kailash Verma , Hitesh Rahangdale , Kumar Ankit Upadhayay , Raj Singh , Bhupendra Singh , Namita Yadav","doi":"10.1016/j.elspec.2025.147541","DOIUrl":"10.1016/j.elspec.2025.147541","url":null,"abstract":"<div><div>We present experimental results on the impact energy dependence of L-subshell x-ray yields and production cross sections for the thick lead target (Pb, Z = 82) under impact of 15–30 keV electrons. Results are compared with the simulation data from the Monte Carlo Penelope code with the Distorted Wave Born Approximation (DWBA) formulations. The comparison yields fairly good agreement for the L-shell x-ray yields within the experimental uncertainties. Furthermore, the present results of the intensity ratio of <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>β</mi></mrow></msub><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>γ</mi></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> lines to the intensity of <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> and their corresponding x-ray production cross sections are compared with available experimental and theoretical data; the agreement is found to be satisfactory. X-ray production cross sections for L-shell x-rays are derived by employing the thick target method (An et al., 2006). Furthermore, we have presented for the first time the experimental results on yield and x-ray production cross sections of the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> line and have compared the results with the simulation data; the agreement between two results is found to be good within the error bars of the measurements.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147541"},"PeriodicalIF":1.8,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143900326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic, magnetic and thermal behavior near the Invar compositions of Fe-Ni alloys","authors":"Ananya Sahoo , Ayusa Aparupa Biswal , S.K. Parida , V.R.R. Medicherla , Soumya Shephalika Behera , M.N. Singh , A. Sagdeo , Sawani Datta , Abhishek Singh , Kalobaran Maiti","doi":"10.1016/j.elspec.2025.147540","DOIUrl":"10.1016/j.elspec.2025.147540","url":null,"abstract":"<div><div>The structural, magnetic and electronic properties of Fe<span><math><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mi>x</mi></mrow></msub></math></span> (<span><math><mi>x</mi></math></span> = 0.32, 0.36, 0.40, 0.50) alloys have been investigated using synchrotron based x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometer and the high resolution x-ray photoelectron spectroscopy (XPS) measurements. The XRD measurement was done down to 50 K temperature. The XRD studies suggest a single phase with fcc structure for <span><math><mi>x</mi></math></span> = 0.36, 0.40, and 0.50 alloys and a mixed phase for <span><math><mi>x</mi></math></span> = 0.32 alloy containing both bcc and fcc structures. The lattice parameter of the alloys exhibits a linear dependence on temperature giving rise to a temperature independent coefficient of thermal expansion (CTE). The lowest CTE is observed for <span><math><mi>x</mi></math></span> = 0.36 Invar alloy as expected while <span><math><mi>x</mi></math></span> = 0.50 alloy exhibits the highest CTE among the alloys studied. The CTE of the fcc component of mixed phase alloy is close to that of Invar alloy. The temperature dependence of magnetization of the alloys down to 2 K reveals an overall antiferromagnetic interactions within the ferromagnetic phase causing the magnetization decreasing with lowering temperature. The field cooled and zero field cooled data show larger differences for the Invar compositions; this is also manifested in the magnetic hysteresis data at 2 K and 300 K. The Fe 2<span><math><mi>p</mi></math></span> and Ni 2<span><math><mi>p</mi></math></span> core level spectra exhibit spin–orbit split features along with a satellite feature in the Ni 2<span><math><mi>p</mi></math></span> spectra. The spectral line shapes are almost similar for all the compositions studied. Interestingly, the spin–orbit splitting for Fe 3<span><math><mi>p</mi></math></span> spectra is larger than that observed for Ni 3<span><math><mi>p</mi></math></span> suggesting additional contributions due to the exchange interaction between the Fe 3<span><math><mi>p</mi></math></span> core hole with the Fe 3<span><math><mi>d</mi></math></span> moment. This suggests large magnetic moment contribution from Fe as expected. The core level and valence band spectra, and the magnetization data suggest significant role of disorder for the Invar compositions.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147540"},"PeriodicalIF":1.8,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143870690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fine structure of spectra for secondary electron excited by electron impact – Novel spectrum data analysis and application to nearly free electron metals","authors":"Satoshi Hashimoto , Tsuguo Sakurada , Shigeo Tanuma , Keisuke Goto , Takaharu Nagatomi","doi":"10.1016/j.elspec.2025.147539","DOIUrl":"10.1016/j.elspec.2025.147539","url":null,"abstract":"<div><div>In order to analyze the fine structure of the energy distribution of secondary electrons generated through the cascade process, we measured the electron spectra of NFE metals (Li, Mg, Al, Ca, Ga, In), their compounds (Al<sub>2</sub>O<sub>3</sub> and GaAs) and Fe as transition metal with a CMA-type analyzer with absolute gain. We propose that the spectrum obtained by differentiating the energy spectrum in a logarithmic representation (defined as DLS) can be used to evaluate the excitation function that generates the fine structure of the secondary electron energy distribution. We found that the fine structure of the energy distribution of secondary electrons in NFE metals is mainly due to emission through a cascade process generated by the electrons from plasmon decay, which was obtained from analyses of the DLS, the excitation function, the energy distribution of secondary electrons <em>N(E)</em>, and the EELS spectra. In addition, slow Auger electrons also generate secondary electrons through the cascade process. In Al<sub>2</sub>O<sub>3</sub>, a fine structure of secondary electrons was generated by electrons excited to unoccupied states by inter-band transitions and inner-shell excitation. In GaAs, both contributions from plasmon decay and electrons excited to unoccupied states by inter-band transitions and inner-shell excitation were observed. Based on these findings, it is concluded that the fine structure of the energy distribution of the secondary electrons emitted in the cascade process is due to the following electrons: 1) electrons from plasmon decay, 2) slow Auger electrons, and 3) electrons excited to unoccupied states by inter-band transitions or inner-shell excitation. These fine structures are superimposed on the structure of the individual excitation by primary electrons.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147539"},"PeriodicalIF":1.8,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143824538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometry-dependent analysis of 2p3d- and 2p3s-partial fluorescence yield spectra for high-spin 3d5 systems","authors":"Saki Imada , Frank M.F. de Groot","doi":"10.1016/j.elspec.2025.147538","DOIUrl":"10.1016/j.elspec.2025.147538","url":null,"abstract":"<div><div>Geometry dependences of partial fluorescence yield (PFY) spectra at the L<sub>2,3</sub>-edge of 3d transition metals are discussed theoretically and experimentally for high-spin 3d<sup>5</sup> systems in O<sub>h</sub> and T<sub>d</sub> point symmetries. Firstly, linear polarized light's propagation direction selection rules for a two-photon process are applied to 2p3d-PFY spectroscopy. Then, the 2p3d-PFY spectra were analyzed by comparison with spectra obtained as partial integration of 2p3d-resonant inelastic X-ray scattering (RIXS) signals, utilizing the relationship between PFY and RIXS spectroscopies: the former is an integration of yield of emitted light at each excitation energy, and the latter is a dispersion of emitted light as a function of emission energy at each excitation energy. Thus, a PFY spectrum can be divided into super PFY (sPFY) spectra using partial integrations of signals on a RIXS map, such as sPFY spectra from elastic and inelastic signals. It is suggested that the origin of the large deviation of 2p3d-PFY spectral shape in a linear-horizontal geometry from a true X-ray absorption spectrum is due to the lack of elastic signals, i.e., the lack of signals emitted when the system returns to its ground state. Contrary to a 2p3d-PFY spectrum, a 2p3s-PFY spectrum is often assumed to have a one-to-one correspondence with true XAS; however, 2p3s-PFY spectroscopy is also a two-photon process that abides by the propagation direction selection rules. We will show theoretically that 2p3s-PFY spectral shapes show a geometry dependence and offer a way to obtain a true X-ray absorption structure from a combination of 2p3s-PFY spectra in linear-vertical and linear-horizontal geometries.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147538"},"PeriodicalIF":1.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143769297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Attosecond dynamics of electron scattering by an absorbing layer","authors":"R.O. Kuzian , E.E. Krasovskii","doi":"10.1016/j.elspec.2025.147535","DOIUrl":"10.1016/j.elspec.2025.147535","url":null,"abstract":"<div><div>Attosecond dynamics of electron reflection from a thin film is studied based on a one-dimensional jellium model. Following the Eisenbud–Wigner–Smith concept, the reflection time delay <span><math><mrow><mi>Δ</mi><msub><mrow><mi>τ</mi></mrow><mrow><mtext>r</mtext></mrow></msub></mrow></math></span> is calculated as the energy derivative of the phase of the complex reflection amplitude <span><math><mi>r</mi></math></span>. For a purely elastic scattering by a jellium slab of a finite thickness <span><math><mi>d</mi></math></span> the transmission probability <span><math><mi>T</mi></math></span> oscillates with the momentum <span><math><mi>K</mi></math></span> in the solid with a period <span><math><mrow><mi>π</mi><mo>/</mo><mi>d</mi></mrow></math></span>, and <span><math><mrow><mi>Δ</mi><msub><mrow><mi>τ</mi></mrow><mrow><mtext>r</mtext></mrow></msub></mrow></math></span> closely follows these oscillations. The reflection delay averaged over an energy interval grows with <span><math><mi>d</mi></math></span>, but in the limit of <span><math><mrow><mi>d</mi><mo>→</mo><mi>∞</mi></mrow></math></span> the amplitude <span><math><mi>r</mi></math></span> becomes real, so <span><math><mrow><mi>Δ</mi><msub><mrow><mi>τ</mi></mrow><mrow><mtext>r</mtext></mrow></msub></mrow></math></span> vanishes. This picture changes substantially with the inclusion of an absorbing potential <span><math><mrow><mo>−</mo><mi>i</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>: As expected, for a sufficiently thick slab the reflection amplitude now tends to its asymptotic value for a semi-infinite crystal. Interestingly, for <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mn>0</mn></mrow></math></span>, around the <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> maxima, the <span><math><mrow><mi>Δ</mi><msub><mrow><mi>τ</mi></mrow><mrow><mtext>r</mtext></mrow></msub><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> curve strongly deviates from <span><math><mrow><mi>T</mi><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, showing a narrow dip just at the <span><math><mrow><mi>Δ</mi><msub><mrow><mi>τ</mi></mrow><mrow><mtext>r</mtext></mrow></msub><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> maximum for <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>. An analytical theory of this counterintuitive behavior is developed.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147535"},"PeriodicalIF":1.8,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143610416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Tricot , H. Ikeda , H.C. Tchouekem , J.-C. Le Breton , S. Yasuda , P. Krüger , P. Le Fèvre , D. Sébilleau , T. Jaouen , P. Schieffer
{"title":"Photoelectron diffraction of twisted bilayer graphene","authors":"S. Tricot , H. Ikeda , H.C. Tchouekem , J.-C. Le Breton , S. Yasuda , P. Krüger , P. Le Fèvre , D. Sébilleau , T. Jaouen , P. Schieffer","doi":"10.1016/j.elspec.2025.147524","DOIUrl":"10.1016/j.elspec.2025.147524","url":null,"abstract":"<div><div>Photoelectron diffraction (PED) is a powerful spectroscopic technique that combines elemental resolution with a high sensitivity to the local atomic arrangement at crystal surfaces, thus providing unique fingerprints of selected atomic sites in matter. Stimulated by the rapid innovation in the development of various analysis methods for probing the atomic and electronic structures of van der Waals (vdW) heterostructures of two-dimensional materials, we present a theoretical assessment of the capacity of PED for extracting structural properties such as stacking, twist angles and interlayer distances. We provide a complete description of PED for the benchmark vdW heterostructure bilayer graphene (BLG), by calculating and analyzing the PED of BLG in Bernal and AA-stacking as well as twisted BLG for a wide range of the twist angle.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147524"},"PeriodicalIF":1.8,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143551406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Zhang , Jianhui Jin , Yujie Zhao , Jize Sun , Weifeng Wang
{"title":"Experimental study on low-pressure and high-temperature pyrolysis of 1, 3-butadiene using synchrotron radiation and SiC flash microreactor","authors":"Jun Zhang , Jianhui Jin , Yujie Zhao , Jize Sun , Weifeng Wang","doi":"10.1016/j.elspec.2025.147527","DOIUrl":"10.1016/j.elspec.2025.147527","url":null,"abstract":"<div><div>1,3-Butadiene is a crucial intermediate in hydrocarbon combustion and pyrolysis processes and plays a significant role as a precursor in the formation of polycyclic aromatic hydrocarbons (PAHs) and soot. This study investigates the low-pressure and high-temperature pyrolysis of 1,3-butadiene by using a newly designed silicon carbide (SiC) tubular flow microreactor, in combination with supersonic molecular beam sampling, synchrotron radiation vacuum ultraviolet single-photon ionization, and reflective time-of-flight mass spectrometry (SR-VUV-TOF-PIMS). We identified 36 pyrolysis products, ranging in mass-to-charge ratio (<em>m/z</em>) from 15 to 128, which included free radicals and isomeric species. The study determined the initial pyrolysis temperature of the parent compound and the initial formation temperatures of the products. Comparative analysis of our results with previous literature revealed the primary cleavage pathways in this work: 1,3-C<sub>4</sub>H<sub>6</sub> → C<sub>2</sub>H<sub>4</sub> + C<sub>2</sub>H<sub>2</sub>, 1,3-C<sub>4</sub>H<sub>6</sub> → 1,2-C<sub>4</sub>H<sub>6</sub>, 1,2-C<sub>4</sub>H<sub>6</sub> → C<sub>3</sub>H<sub>3</sub>· + CH<sub>3</sub>·<sub>,</sub> 1,3-C<sub>4</sub>H<sub>6</sub> + C<sub>3</sub>H<sub>3</sub>· → C<sub>3</sub>H<sub>4</sub> + C<sub>4</sub>H<sub>5</sub>·, 1,3-i-C<sub>4</sub>H<sub>5</sub>· → C<sub>4</sub>H<sub>4</sub> + H· and 1,3-n-C<sub>4</sub>H<sub>5</sub>· → C<sub>4</sub>H<sub>4</sub> + H·. These studies contribute valuable insights into the mechanisms of hydrocarbon combustion and pyrolysis, as well as the reference for the formation processes of PAHs and soot.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147527"},"PeriodicalIF":1.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143551405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phonon effects in high-energy photoemission spectra","authors":"Takashi Fujikawa, Kaori Niki","doi":"10.1016/j.elspec.2025.147525","DOIUrl":"10.1016/j.elspec.2025.147525","url":null,"abstract":"<div><div>In this paper some phonon effects on high-energy photoemission spectra for solids are discussed from a theoretical point of view. In case of photoemission from deep cores, recoil and Franck–Condon (FC) effects play some important roles: The former contributes to the peak shift following classical free atom recoil shift rule, however the latter has no influence on the shift within the harmonic phonon approximation. Both contribute to the temperature dependent peak broadening. In addition to these individual effects, the interference between recoil and FC should be considered, which contributes to the peak shift. In the harmonic approximation, the recoil shift is independent of the temperature. Beyond this approximation, we can expect that the recoil shift depends on the temperature in accordance with the observed results for some special systems. In addition to the core level photoemission, we discuss the high-energy photoemission from extended valence levels: Recoil effects and the turnover from ARPES to XPS limit are discussed.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147525"},"PeriodicalIF":1.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143509353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of edge configurations diversity on the energy gap in MXene zigzag nanoribbons based on Ti3C2O2 and Sc3C2F2","authors":"M.S. Akhoundi Khezrabad , O. Soltani , A. Shokri","doi":"10.1016/j.elspec.2025.147526","DOIUrl":"10.1016/j.elspec.2025.147526","url":null,"abstract":"<div><div>In this study, we report the band structure and energy gap of different edges of Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub> and Sc<sub>3</sub>C<sub>2</sub>F<sub>2</sub> zigzag nanoribbons using tight-binding approximation. Our results show that in most widths of zigzag nanoribbons, the energy gap in different edge configurations has different values even though they have the same width. In Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub> nanoribbons, the presence of central atoms at the edge of the zigzag nanoribbon increases the band-gap and in Sc<sub>3</sub>C<sub>2</sub>F<sub>2</sub> nanoribbon, depending on the width of the nanoribbon, the presence of central atoms or surface atoms on the edge of the nanoribbon can increase the band-gap. The maximum difference reaches 0.3 eV in Sc<sub>3</sub>C<sub>2</sub>F<sub>2</sub> nanoribbon and 0.17 eV in Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub> nanoribbon. The band gap depending on the edge atoms can be important for the design and use of MXene nanoribbons in electronic and optoelectronic devices.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"279 ","pages":"Article 147526"},"PeriodicalIF":1.8,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143487746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoionization and electronic structure of chemical warfare agents","authors":"Igor Novak","doi":"10.1016/j.elspec.2025.147523","DOIUrl":"10.1016/j.elspec.2025.147523","url":null,"abstract":"<div><div>The vertical, valence ionization energies for several chemical warfare agents (CWA): nerve agents, choking agents and blister agents have been calculated (as free molecules) using high-level ab initio coupled-cluster method: IP-EOM-CCSD. The calculated vertical, valence ionization energies were used to simulate UV photoelectron spectra. We also calculated 1st adiabatic ionization energies for these CWA. Our results, especially 1st ionization energies (vertical and adiabatic) may be useful when applying photoionization techniques as part of hyphenated methods for detection and identification of CWA. The variations of vertical ionization energies were rationalized by the analysis of the electronic structure of CWA. The influence of electronic structures on toxicological properties is also discussed on the basis of calculated Hirshfeld type charges.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"279 ","pages":"Article 147523"},"PeriodicalIF":1.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}