{"title":"Transparent and Flexible Patch Antenna Using MMF for Conformal WiFi-6E Applications","authors":"T. Nguyen, Yong-Seung Lee, C. Jung","doi":"10.26866/jees.2023.4.r.172","DOIUrl":"https://doi.org/10.26866/jees.2023.4.r.172","url":null,"abstract":"In this paper, a patch antenna with compact, flexible, and transparent properties is presented to support Wi-Fi 6E (2.4 GHz/ 6 GHz) applications. This antenna design was formulated based on a transparent metal mesh film (MMF), for which the average optical transparency ( OT (cid:2911)(cid:2932) ) is 69% and the sheet resistance ( R (cid:2929) ) is 0.1Ω/sq. The measurement results on frequency bands of 2.4-2.51 GHz and 5.87-7.04 GHz show that the average gain exceeds 5.4 dBi and 6.3 dBi with corresponding radiation efficiency rates as high as 67.8% and 70%. In addition, for the purpose of integration into aesthetic devices for smart home applications, the antenna conformed to foam and a lamp. All research outcomes here indicate that the proposed antenna maintains a directional radiation pattern, as well as transparency and flexibility, making it a potential candidate for transparent Internet of Things (IoT) applications.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41387768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Concise and Time-efficient Method for Characterizing the Permittivity of Unknown Materials","authors":"Junhyuk Ahn, Youngno Youn, W. Hong","doi":"10.26866/jees.2023.5.r.181","DOIUrl":"https://doi.org/10.26866/jees.2023.5.r.181","url":null,"abstract":"We propose a simplified and time-efficient methodology to characterize the permittivity of unknown materials. Based on the transmission line method, this method enables permittivity extraction using a small number of dielectric materials under test (MUT). It is fully compatible with conventional electromagnetic measurement environments and does not require any modification, since the extraction is conducted simply by replacing the MUT above the coplanar waveguide (CPW). The proposed approach enables a more concise and faster measurement process compared to conventional methods previously reported in the literature. This method is then numerically and experimentally verified through various MUTs that have different permittivities or thicknesses. The results are determined to be valid over a continuous frequency range of 1.0 GHz–30.0 GHz with an average accuracy of over 95.0%.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46570157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic Field Analysis of Hollow Halbach Long Stator Permanent Magnet Synchronous Linear Motor for Suspension Permanent Magnet Maglev Train","authors":"Yongchao Wang, Kuang-Yao Fan, Qishou Pang","doi":"10.26866/jees.2023.4.r.174","DOIUrl":"https://doi.org/10.26866/jees.2023.4.r.174","url":null,"abstract":"In suspended permanent magnet maglev trains, the magnetic field generated by hollow-type permanent magnet synchronous linear motors is one of the main sources of low-frequency electromagnetic fields. To investigate the magnetic field generated by the linear motor in the train, this paper first establishes the 2D and 3D models of the linear motor using ANSYS EM software. Then, the electromagnetic simulation of the magnetic field of the linear motor is performed under conditions of no load and full load. Next, the magnetic field of the motor is measured using a six-channel high-precision magnetic field test system, and the simulation and measurement results are compared. The result analysis indicates that the energy distribution of the electromagnetic field generated by the linear motor is uniform and that the magnetic induction intensity falls within the range of 0 to 1.1 T. Meanwhile, the linear motor can form a closed loop with a small electromagnetic field energy leakage. Combined with its installation structure, the radiation to the surrounding environment is weak, and the interference with the normal operation of the train control communication equipment is minimal. This study lays a foundation for analyzing electromagnetic distribution on the surface of the suspended permanent magnet maglev train. It also provides a basis for formulating various electromagnetic radiation protection measures and provides theoretical support for developing suspended permanent magnet maglev trains.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48267934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ngoc Tien Le, Truong Le-Huu, Ngoc An Nguyen, S. Ta, Khac Kiem Nguyen, N. Nguyen-Trong
{"title":"Gain and Frequency-Selectivity Enhancement of Dual- Polarized Filtering IBFD Antenna Using PRS","authors":"Ngoc Tien Le, Truong Le-Huu, Ngoc An Nguyen, S. Ta, Khac Kiem Nguyen, N. Nguyen-Trong","doi":"10.26866/jees.2023.4.r.173","DOIUrl":"https://doi.org/10.26866/jees.2023.4.r.173","url":null,"abstract":"A dual-polarized filtering Fabry–Perot antenna (FPA) with high selectivity and high isolation is proposed for in-band full-duplex (IBFD) applications. The proposed antenna utilizes a square patch as the feeding element, which is fed by a double differential-fed scheme for dual-polarized radiation with high isolation. The patch is loaded with a symmetrical cross-slot and four shorting pins for a broad passband filtering feature. To enhance broadside gain across a wide frequency range, the patch is incorporated with a partially reflecting surface (PRS), which is composed of two complementary cross-slot and patch arrays. Moreover, the frequency selectivity of PRS is exploited to improve the filtering characteristic. The double differential feeds are realized based on out-of-phase power dividers, which are combined with simple low-pass filters to further improve the out-of-band suppression. The final design was fabricated and measured. The measurement results show excellent results with a 10-dB return loss bandwidth of 21.5% (4.91–6.09 GHz), isolation of greater than 40 dB, peak gain of 13.7 dBi, out-of-band suppression level of better than 27 dB, and a cross-polarization level of less than –27 dB.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49535037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reduction of Electric Vehicle Electromagnetic Radiations Using a Global Network Model","authors":"Feng Gao, Ming Xu","doi":"10.26866/jees.2023.4.r.175","DOIUrl":"https://doi.org/10.26866/jees.2023.4.r.175","url":null,"abstract":"To address an electric vehicle’s magnetic emission problem, a model-based improvement strategy is proposed to avoid resource-intensive experimental diagnosis processes, thus achieving higher efficiency. Considering the electrical and structural characteristics of electric vehicles, a network model is developed to predict magnetic emissions. It decomposes the electronic power system into a global network and external circuit nodes according to electrical size. The Z-parameter is used to characterize the global network for the decomposition of impedance coupling so that the model parameters can be obtained separately using different methods. With this network model, an evaluation index is designed to measure the influence of technical factors on magnetic emissions by comprehensively considering their contributions and rooms for improvement. Engineers can directly determine the main interference source according to this evaluation score, and select a proper filter to attenuate the interference.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45247478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Euiho Shin, Youngchul Chung, Cheol-Sun Park, Seonkyo Kim, Jungsuek Oh
{"title":"Broadband Beamforming Using the Least Square Method Improved via Adaptive Diagonal Loading","authors":"Euiho Shin, Youngchul Chung, Cheol-Sun Park, Seonkyo Kim, Jungsuek Oh","doi":"10.26866/jees.2023.4.l.14","DOIUrl":"https://doi.org/10.26866/jees.2023.4.l.14","url":null,"abstract":"The least square method (LSM) is a commonly used beamforming method. However, it limits the beamforming frequency bandwidth and is vulnerable to noise; therefore, diagonal loading is used to overcome these limitations. The diagonal loading proposed in this study can be used for broadband beamforming in cases in which noise does not exist, and it makes the loading factor adaptive to a singular value distribution. The simulation results show that the proposed method works stably above the beamforming frequency limit, even for an extended beamforming frequency. We expect that the proposed method can be used to form frequency-invariant beam patterns used in monopulse algorithms to detect signals of unknown frequencies.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43185744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Compact Fragment-Type Antenna Array for Microwave-Based Head Imaging Application","authors":"Bo Han, Shibing Wang, Xiaofeng Shi","doi":"10.26866/jees.2023.4.r.176","DOIUrl":"https://doi.org/10.26866/jees.2023.4.r.176","url":null,"abstract":"Specifically designed antennas are needed to meet the needs of head imaging applications where an antenna array is typically used. In this article, the design of a compact fragment-type antenna using a genetic algorithm is proposed. The proposed antenna is fabricated by a low-cost FR4 substrate and covers a 72.4% fractional bandwidth (1.92 to 4.1 GHz), with an average gain of more than 2.02 dBi. The overall structure of the proposed antenna is equivalent to 0.29 λ 0 × 0.19 λ 0, where λ 0 is the corresponding wavelength at 1.92 GHz. The results indicate that the proposed antenna is compact and suitable for microwave-based head imaging. An effective microwave head imaging system with an array of 8 compact fragment-type antennas is designed, with one antenna working as a transmitter and the others working as a receiver in turn. The imaging performance is investigated with blood layer inside the head model using the Microwave Radar-Based Imaging Toolbox open-source software. The detection of the presence and location of stroke is done by analyzing the compact fragment-type antennas’ backscattered signal.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48198282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of Induced Polarization Parameters from Electromagnetic Data using Evolutionary Approach","authors":"M. Elkattan, Aladin Kamel","doi":"10.26866/jees.2023.4.r.171","DOIUrl":"https://doi.org/10.26866/jees.2023.4.r.171","url":null,"abstract":"Electromagnetic methods are one of the most important tools for exploring the physical properties of scatterers. When the scattering object is polarizable, more information can be gained from electromagnetic measurements to determine the scatterer’s electrical properties. In this paper, an inversion scheme is introduced to extract induced polarization information from electromagnetic measurements. The inverse scattering problem is reformulated as an optimization problem that utilizes an efficient forward model solver to compute the scattered field. Furthermore, a simulated annealing approach is considered in the presented scheme, wherein different cooling schedules are evaluated to solve the inverse problem. The results of applying the proposed scheme to various case studies are reported.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48228504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Jang, D. Jung, Y. Lee, Doohyung Cho, Kunsik Park, Jong-Won Lim, Wonkyo Kim, Joomin Park, Ick-Jae Yoon
{"title":"LTCC-Based DC-DC Converter for Reduction of Switching Noise and Radiated Emissions","authors":"H. Jang, D. Jung, Y. Lee, Doohyung Cho, Kunsik Park, Jong-Won Lim, Wonkyo Kim, Joomin Park, Ick-Jae Yoon","doi":"10.26866/jees.2023.3.r.165","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.165","url":null,"abstract":"In this study, a low-temperature co-fired ceramic (LTCC)-based direct current (DC)-DC converter is proposed for reducing stray inductance and mitigating electromagnetic interference. The dominant radiating loop of the proposed LTCC-based DC-DC converter features a multilayer design, which helps suppress noise sources and reduce radiated emissions. The peak voltage of switching noise for the proposed DC-DC converter at the frequency of 500 kHz is approximately 8.98% lower than that of a conventional DC-DC converter. In addition, the radiated emission level of the proposed DC-DC converter is lower than that of the conventional DC-DC converter. In sum, the proposed LTCC-technology-based multilayer design reduces the peak voltage of switching noise and the radiated emission of the DC-DC converter.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47968862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuang Bi, Heyang Shan, Kai Gao, Shaojing Wang, Peng Xu
{"title":"Modeling and Prediction of Common Mode Electromagnetic Interference in GaN-Based Switching Power Converters","authors":"Chuang Bi, Heyang Shan, Kai Gao, Shaojing Wang, Peng Xu","doi":"10.26866/jees.2023.3.r.163","DOIUrl":"https://doi.org/10.26866/jees.2023.3.r.163","url":null,"abstract":"Behavioral models of common mode (CM) electromagnetic interference (EMI) are proposed herein for a GaN high-electron-mobility transistor (HEMT) synchronous buck converter. First, a CM noise model is developed using a linear equivalent circuit that consists of a voltage source, current source, and two noise impedances. The behavioral parameters of the CM model are then extracted by changing the input-side shunt impedances. A GaN HEMT buck converter setup is then built using switching frequencies of 100 kHz, 200 kHz, and 500 kHz to verify the validity of the CM EMI behavioral model. A comparison between the experimental and predicted results indicated that the proposed CM EMI model of GaN-based power converters was able to predict well the CM EMI current in the 150 kHz–30 MHz frequency range.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43967275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}