Han-Hee Lee, Jung-Hwan Lim, J. W. Lee, J. Kwon, Junghwan Hwang, Changhee Hyoung, Hyunho Park
{"title":"Estimation of Electromagnetic Field Penetration into Concrete Buildings Using a Theoretical Approach Considering External Environmental Factors","authors":"Han-Hee Lee, Jung-Hwan Lim, J. W. Lee, J. Kwon, Junghwan Hwang, Changhee Hyoung, Hyunho Park","doi":"10.26866/jees.2023.3.r.161","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a theoretical approach to estimate the power level of electromagnetic waves radiated into a structure by a specific external source. The target structure is a multistory building on a university campus that is used primarily for academic purposes and is much larger than the target wavelength. To verify the accuracy and efficiency of the proposed theoretical approach, measurements were carried out and a commercially available simulation tool, Wireless Insite, was adopted. We then analyzed the influence of an area of vegetation as an external environmental factor that could affect the radiated electromagnetic waves because of its location in front of the target structure. For this, a precise simulation environment was designed to derive the quantitative values of the electromagnetic attenuation caused by the external environmental factor. Furthermore, those values were applied to the theoretical approach. The results of the theoretical approach accounting for the external environmental factor were similar to those of the actual measured results. The results were also similar to those of the simulation tool, Wireless Insite, but the theoretical approach provided more efficient analysis results in terms of time consumption and computer resources.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.3.r.161","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose a theoretical approach to estimate the power level of electromagnetic waves radiated into a structure by a specific external source. The target structure is a multistory building on a university campus that is used primarily for academic purposes and is much larger than the target wavelength. To verify the accuracy and efficiency of the proposed theoretical approach, measurements were carried out and a commercially available simulation tool, Wireless Insite, was adopted. We then analyzed the influence of an area of vegetation as an external environmental factor that could affect the radiated electromagnetic waves because of its location in front of the target structure. For this, a precise simulation environment was designed to derive the quantitative values of the electromagnetic attenuation caused by the external environmental factor. Furthermore, those values were applied to the theoretical approach. The results of the theoretical approach accounting for the external environmental factor were similar to those of the actual measured results. The results were also similar to those of the simulation tool, Wireless Insite, but the theoretical approach provided more efficient analysis results in terms of time consumption and computer resources.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.