Journal of Dental Research最新文献

筛选
英文 中文
Unveiling the Neurodegenerative Alterations through Oral Stem Cells 通过口腔干细胞揭开神经退行性病变的神秘面纱
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-09-14 DOI: 10.1177/00220345241265661
M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano
{"title":"Unveiling the Neurodegenerative Alterations through Oral Stem Cells","authors":"M. Tatullo, T. Cocco, A. Ferretta, R. Caroppo, B. Marrelli, G. Spagnuolo, F. Paduano","doi":"10.1177/00220345241265661","DOIUrl":"https://doi.org/10.1177/00220345241265661","url":null,"abstract":"Parkinson’s disease (PD) is a neurodegenerative condition characterized by the progressive and selective loss of dopaminergic (DAergic) neurons in the midbrain. The replacement of neuromelanin (NM)–containing DAergic neurons in the substantia nigra and the enhancement of NM concentration could offer a promising and safe approach to treating PD symptoms. The objective of this study was to investigate and compare the potential of human periapical-cysts mesenchymal stem cells (hPCy-MSCs) and dental pulp stem cells (DPSCs) to differentiate into DAergic NM-producing neurons and to generate functional 3-dimensional (3D) midbrain-like organoids in vitro. We assessed the changes in morphology and behavior of neuron-like cells (NLCs) as well as the expression of molecular markers characterizing the DAergic neurons. Furthermore, we observed electrically active and functionally mature DAergic neurons by means of electrophysiological assays, NM dosage assays, and the quantification of dopamine release by high-performance liquid chromatography. Our results demonstrate for the first time that both hPCy-MSCs and DPSCs are capable of differentiating into NLCs, further confirmed by the increase in lactate levels in the medium of cells exposed to neurogenic conditions. Importantly, we have induced such NLCs to further differentiate into functional DAergic NM-producing neurons. Finally, 3D midbrain-like organoids have been produced from oral stem cells: they appear as neurosphere-like structures diffusely expressing the neural marker β-III tubulin and containing NM-like granules. Our findings open up a novel and fascinating opportunity to rethink oral stem cells, and the derived 3D disease models, as a strategic and reliable tool for unveiling the neurodegenerative alterations.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Methods for Image Analysis in Craniofacial Development and Disease 颅面发育和疾病图像分析的计算方法
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-09-14 DOI: 10.1177/00220345241265048
E. James, A.J. Caetano, P.T. Sharpe
{"title":"Computational Methods for Image Analysis in Craniofacial Development and Disease","authors":"E. James, A.J. Caetano, P.T. Sharpe","doi":"10.1177/00220345241265048","DOIUrl":"https://doi.org/10.1177/00220345241265048","url":null,"abstract":"Observation is at the center of all biological sciences. Advances in imaging technologies are therefore essential to derive novel biological insights to better understand the complex workings of living systems. Recent high-throughput sequencing and imaging techniques are allowing researchers to simultaneously address complex molecular variations spatially and temporarily in tissues and organs. The availability of increasingly large dataset sizes has allowed for the evolution of robust deep learning models, designed to interrogate biomedical imaging data. These models are emerging as transformative tools in diagnostic medicine. Combined, these advances allow for dynamic, quantitative, and predictive observations of entire organisms and tissues. Here, we address 3 main tasks of bioimage analysis, image restoration, segmentation, and tracking and discuss new computational tools allowing for 3-dimensional spatial genomics maps. Finally, we demonstrate how these advances have been applied in studies of craniofacial development and oral disease pathogenesis.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photobiomodulation of Gingival Cells Challenged with Viable Oral Microbes 对受到口腔微生物挑战的牙龈细胞进行光生物调节
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-05-03 DOI: 10.1177/00220345241246529
J. Tanum, H.E. Kim, S.M. Lee, A. Kim, J. Korostoff, G. Hwang
{"title":"Photobiomodulation of Gingival Cells Challenged with Viable Oral Microbes","authors":"J. Tanum, H.E. Kim, S.M. Lee, A. Kim, J. Korostoff, G. Hwang","doi":"10.1177/00220345241246529","DOIUrl":"https://doi.org/10.1177/00220345241246529","url":null,"abstract":"The oral cavity, a unique ecosystem harboring diverse microorganisms, maintains health through a balanced microflora. Disruption may lead to disease, emphasizing the protective role of gingival epithelial cells (GECs) in preventing harm from pathogenic oral microbes. Shifting GECs’ response from proinflammatory to antimicrobial could be a novel strategy for periodontitis. Photobiomodulation therapy (PBMT), a nonpharmacologic host modulatory approach, is considered an alternative to drugs. While the host cell response induced by a single type of pathogen-associated molecular patterns (PAMPs) was widely studied, this model does not address the cellular response to intact microbes that exhibit multiple PAMPs that might modulate the response. Inspired by this, we developed an in vitro model that simulates direct interactions between host cells and intact pathogens and evaluated the effect of PBMT on the response of human gingival keratinocytes (HGKs) to challenge viable oral microbes at both the cellular and molecular levels. Our data demonstrated that LED pretreatment on microbially challenged HGKs with specific continuous wavelengths (red: 615 nm; near-infrared: 880 nm) induced the production of various antimicrobial peptides, enhanced cell viability and proliferation, promoted reactive oxygen species scavenging, and down-modulated proinflammatory activity. The data also suggest a potential explanation regarding the superior efficacy of near-infrared light treatment compared with red light in enhancing antimicrobial activity and reducing cellular inflammation of HGKs. Taken together, the findings suggest that PBMT enhances the overall barrier function of gingival epithelium while minimizing inflammation-mediated breakdown of the underlying structures.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Acid-Responsive Iron-Based Nanocomposite for OSCC Treatment 用于治疗 OSCC 的酸响应铁基纳米复合材料
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-04-30 DOI: 10.1177/00220345241238154
X. Zhao, D. Leng, H. Wang, H. Jin, Y. Wu, Z. Qin, D. Wu, X. Wei
{"title":"An Acid-Responsive Iron-Based Nanocomposite for OSCC Treatment","authors":"X. Zhao, D. Leng, H. Wang, H. Jin, Y. Wu, Z. Qin, D. Wu, X. Wei","doi":"10.1177/00220345241238154","DOIUrl":"https://doi.org/10.1177/00220345241238154","url":null,"abstract":"Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, characterized by invasiveness, local lymph node metastasis, and poor prognosis. Traditional treatment and medications have limitations, making the specific inhibition of OSCC growth, invasion, and metastasis a challenge. The tumor microenvironment exhibits mildly acidity and high concentrations of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>, and its exploitation for cancer treatment has been widely researched across various cancers, but research in the oral cancer field is relatively limited. In this study, by loading ultra-small Prussian blue nanoparticles (USPBNPs) into mesoporous calcium–silicate nanoparticles (MCSNs), we developed an acid-responsive iron-based nanocomposite, USPBNPs@MCSNs (UPM), for the OSCC treatment. UPM demonstrated excellent dual enzyme activities, generating toxic ·OH in a mildly acidic environment, effectively killing OSCC cells and producing O<jats:sub>2</jats:sub> in a neutral environment to alleviate tissue hypoxia. The results showed that UPM could effectively inhibit the proliferation, migration, and invasion of OSCC cells, as well as the growth of mice solid tumors, without obvious systemic toxicity. The mechanisms may involve UPM inducing ferroptosis of OSCC cells by downregulating the xCT/GPX4/glutathione (GSH) axis, characterized by intracellular iron accumulation, reactive oxygen species accumulation, GSH depletion, lipid peroxidation, and abnormal changes in mitochondrial morphology. Therefore, this study provides empirical support for ferroptosis as an emerging therapeutic target for OSCC and offers a valuable insight for future OSCC treatment.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enterococcus faecalis Extracellular Vesicles Promote Apical Periodontitis 粪肠球菌胞外小泡促进根尖牙周炎的发生
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-04-29 DOI: 10.1177/00220345241230867
R.Y. Ma, Z.L. Deng, Q.Y. Du, M.Q. Dai, Y.Y. Luo, Y.E. Liang, X.Z. Dai, S.M. Guo, W.H. Zhao
{"title":"Enterococcus faecalis Extracellular Vesicles Promote Apical Periodontitis","authors":"R.Y. Ma, Z.L. Deng, Q.Y. Du, M.Q. Dai, Y.Y. Luo, Y.E. Liang, X.Z. Dai, S.M. Guo, W.H. Zhao","doi":"10.1177/00220345241230867","DOIUrl":"https://doi.org/10.1177/00220345241230867","url":null,"abstract":"Enterococcus faecalis is an important contributor to the persistence of chronic apical periodontitis. However, the mechanism by which E. faecalis infection in the root canals and dentinal tubules affects periapical tissue remains unclear. Bacterial extracellular vesicles (EVs) act as natural carriers of microbe-associated molecular patterns (MAMPs) and have recently attracted considerable attention. In this study, we investigated the role of EVs derived from E. faecalis in the pathogenesis of apical periodontitis. We observed that E. faecalis EVs can induce inflammatory bone destruction in the periapical areas of mice. Double-labeling immunofluorescence indicated that M1 macrophage infiltration was increased by E. faecalis EVs in apical lesions. Moreover, in vitro experiments demonstrated the internalization of E. faecalis EVs into macrophages. Macrophages tended to polarize toward the M1 profile after treatment with E. faecalis EVs. Pattern recognition receptors (PRRs) can recognize MAMPs of bacterial EVs and, in turn, trigger inflammatory responses. Thus, we performed further mechanistic exploration, which showed that E. faecalis EVs considerably increased the expression of NOD2, a cytoplasmic PRR, and that inhibition of NOD2 markedly reduced macrophage M1 polarization induced by E. faecalis EVs. RIPK2 ubiquitination is a major downstream of NOD2. We also observed increased RIPK2 ubiquitination in macrophages treated with E. faecalis EVs, and E. faecalis EV-induced macrophage M1 polarization was notably alleviated by the RIPK2 ubiquitination inhibitor. Our study revealed the potential for EVs to be considered a virulence factor of E. faecalis and found that E. faecalis EVs can promote macrophage M1 polarization via NOD2/RIPK2 signaling. To our knowledge, this is the first report to investigate apical periodontitis development from the perspective of bacterial vesicles and demonstrate the role and mechanism of E. faecalis EVs in macrophage polarization. This study expands our understanding of the pathogenic mechanism of E. faecalis and provides novel insights into the pathogenesis of apical periodontitis.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence in Orthodontics: Critical Review 人工智能在正畸学中的应用:批判性评论
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-04-29 DOI: 10.1177/00220345241235606
N.F. Nordblom, M. Büttner, F. Schwendicke
{"title":"Artificial Intelligence in Orthodontics: Critical Review","authors":"N.F. Nordblom, M. Büttner, F. Schwendicke","doi":"10.1177/00220345241235606","DOIUrl":"https://doi.org/10.1177/00220345241235606","url":null,"abstract":"With increasing digitalization in orthodontics, certain orthodontic manufacturing processes such as the fabrication of indirect bonding trays, aligner production, or wire bending can be automated. However, orthodontic treatment planning and evaluation remains a specialist’s task and responsibility. As the prediction of growth in orthodontic patients and response to orthodontic treatment is inherently complex and individual, orthodontists make use of features gathered from longitudinal, multimodal, and standardized orthodontic data sets. Currently, these data sets are used by the orthodontist to make informed, rule-based treatment decisions. In research, artificial intelligence (AI) has been successfully applied to assist orthodontists with the extraction of relevant data from such data sets. Here, AI has been applied for the analysis of clinical imagery, such as automated landmark detection in lateral cephalograms but also for evaluation of intraoral scans or photographic data. Furthermore, AI is applied to help orthodontists with decision support for treatment decisions such as the need for orthognathic surgery or for orthodontic tooth extractions. One major challenge in current AI research in orthodontics is the limited generalizability, as most studies use unicentric data with high risks of bias. Moreover, comparing AI across different studies and tasks is virtually impossible as both outcomes and outcome metrics vary widely, and underlying data sets are not standardized. Notably, only few AI applications in orthodontics have reached full clinical maturity and regulatory approval, and researchers in the field are tasked with tackling real-world evaluation and implementation of AI into the orthodontic workflow.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140814564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Mechanism of MSCs Responding to Occlusal Force for Bone Homeostasis 间充质干细胞响应咬合力促进骨平衡的新机制
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-04-26 DOI: 10.1177/00220345241236120
F. Wang, H. Wang, H. Zhang, B. Sun, Z. Wang
{"title":"A Novel Mechanism of MSCs Responding to Occlusal Force for Bone Homeostasis","authors":"F. Wang, H. Wang, H. Zhang, B. Sun, Z. Wang","doi":"10.1177/00220345241236120","DOIUrl":"https://doi.org/10.1177/00220345241236120","url":null,"abstract":"Alveolar bone, as tooth-supporting bone for mastication, is sensitive to occlusal force. However, the mechanism of alveolar bone loss after losing occlusal force remains unclear. Here, we performed single-cell RNA sequencing of nonhematopoietic (CD45<jats:sup>–</jats:sup>) cells in mouse alveolar bone after removing the occlusal force. Mesenchymal stromal cells (MSCs) and endothelial cell (EC) subsets were significantly decreased in frequency, as confirmed by immunofluorescence and flow cytometry. The osteogenic and proangiogenic abilities of MSCs were impaired, and the expression of mechanotransducers yes associated protein 1 ( Yap) and WW domain containing transcription regulator 1 ( Taz) in MSCs decreased. Conditional deletion of Yap and Taz from LepR<jats:sup>+</jats:sup> cells, which are enriched in MSCs that are important for adult bone homeostasis, significantly decreased alveolar bone mass and resisted any further changes in bone mass induced by occlusal force changes. Interestingly, LepR-Cre; Yap<jats:sup>f/f</jats:sup>; Taz<jats:sup>f/f</jats:sup> mice showed a decrease in CD31<jats:sup>hi</jats:sup> endomucin (Emcn)<jats:sup>hi</jats:sup> endothelium, and the expression of some EC-derived signals acting on osteoblastic cells was inhibited in alveolar bone. Mechanistically, conditional deletion of Yap and Taz in LepR<jats:sup>+</jats:sup> cells inhibited the secretion of pleiotrophin (Ptn), which impaired the proangiogenic capacity of LepR<jats:sup>+</jats:sup> cells. Knockdown in MSC-derived Ptn repressed human umbilical vein EC tube formation in vitro. More important, administration of recombinant PTN locally recovered the frequency of CD31<jats:sup>hi</jats:sup>Emcn<jats:sup>hi</jats:sup> endothelium and rescued the low bone mass phenotype of LepR-Cre; Yap<jats:sup>f/f</jats:sup>; Taz<jats:sup>f/f</jats:sup> mice. Taken together, these findings suggest that occlusal force governs MSC-regulated endothelium to maintain alveolar bone homeostasis through the Yap/Taz/Ptn axis, providing a reference for further understanding of the relationship between dysfunction and bone homeostasis.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tongue-Coating Microbial and Metabolic Characteristics in Halitosis 口臭的舌苔微生物和代谢特征
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-04-16 DOI: 10.1177/00220345241230067
Y. Zhang, K.L. Lo, A.N. Liman, X.P. Feng, W. Ye
{"title":"Tongue-Coating Microbial and Metabolic Characteristics in Halitosis","authors":"Y. Zhang, K.L. Lo, A.N. Liman, X.P. Feng, W. Ye","doi":"10.1177/00220345241230067","DOIUrl":"https://doi.org/10.1177/00220345241230067","url":null,"abstract":"Halitosis is a common oral condition, which leads to social embarrassment and affects quality of life. Cumulative evidence has suggested the association of tongue-coating microbiome with the development of intraoral halitosis. The dynamic variations of tongue-coating microbiota and metabolites in halitosis have not been fully elucidated. Therefore, the present study aimed to determine the tongue-coating microbial and metabolic characteristics in halitosis subjects without other oral diseases using metagenomics and metabolomics analysis. The participants underwent oral examination, halitosis assessment, and tongue-coating sample collection for the microbiome and metabolome analysis. It was found that the microbiota richness and diversity were significantly elevated in the halitosis group. Furthermore, species from Actinomyces, Prevotella, Veillonella, and Solobacterium were significantly more abundant in the halitosis group. However, the Rothia and Streptococcus species exhibited opposite tendencies. Eleven Kyoto Encyclopedia of Genes and Genomes pathways were significantly enriched in the halitosis tongue coatings, including cysteine and methionine metabolism. Functional genes related to sulfur, indole, skatole, and cadaverine metabolic processes (such as serA, metH, metK and dsrAB) were identified to be more abundant in the halitosis samples. The metabolome analysis revealed that indole-3-acetic, ornithine, and L-tryptophan were significantly elevated in the halitosis samples. Furthermore, it was observed that the values of volatile sulfur compounds and indole-3-acetic abundances were positively correlated. The multiomics analysis identified the metagenomic and metabolomic characteristics to differentiate halitosis from healthy individuals using the least absolute shrinkage and selection operator logistic regression and random forest classifier. A total of 19 species and 39 metabolites were identified as features in halitosis patients, which included indole-3-acetic acid, Bacillus altitudinis, Candidatus Saccharibacteria, and Actinomyces species. In conclusion, an evident shift in microbiome and metabolome characteristics was observed in the halitosis tongue coating, which may have a potential etiological significance and provide novel insights into the mechanism for halitosis.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodontitis, Dental Procedures, and Young-Onset Cryptogenic Stroke 牙周炎、牙科手术与青年隐源性中风
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-04-16 DOI: 10.1177/00220345241232406
J. Leskelä, J. Putaala, N. Martinez-Majander, L. Tulkki, M. Manzoor, S. Zaric, P. Ylikotila, R. Lautamäki, A. Saraste, S. Suihko, E. Könönen, J. Sinisalo, P.J. Pussinen, S. Paju
{"title":"Periodontitis, Dental Procedures, and Young-Onset Cryptogenic Stroke","authors":"J. Leskelä, J. Putaala, N. Martinez-Majander, L. Tulkki, M. Manzoor, S. Zaric, P. Ylikotila, R. Lautamäki, A. Saraste, S. Suihko, E. Könönen, J. Sinisalo, P.J. Pussinen, S. Paju","doi":"10.1177/00220345241232406","DOIUrl":"https://doi.org/10.1177/00220345241232406","url":null,"abstract":"Periodontitis is associated with an increased risk of ischemic stroke, and the risk may be particularly high among young people with unexplained stroke etiology. Thus, we investigated in a case-control study whether periodontitis or recent invasive dental treatments are associated with young-onset cryptogenic ischemic stroke (CIS). We enrolled participants from a multicenter case-control SECRETO study including adults aged 18 to 49 y presenting with an imaging-positive first-ever CIS and stroke-free age- and sex-matched controls. Thorough clinical and radiographic oral examination was performed. Furthermore, we measured serum lipopolysaccharide (LPS) and lipotechoic acid (LTA) levels. Multivariate conditional regression models were adjusted for stroke risk factors, regular dentist visits, and patent foramen ovale (PFO) status. We enrolled 146 case-control pairs (median age 41.9 y; 58.2% males). Periodontitis was diagnosed in 27.5% of CIS patients and 20.1% of controls ( P &lt; 0.001). In the fully adjusted models, CIS was associated with high periodontal inflammation burden (odds ratio [OR], 95% confidence interval) with an OR of 10.48 (3.18–34.5) and severe periodontitis with an OR of 7.48 (1.24–44.9). Stroke severity increased with the severity of periodontitis, having an OR of 6.43 (1.87–23.0) in stage III to IV, grade C. Invasive dental treatments performed within 3 mo prestroke were associated with CIS, with an OR of 2.54 (1.01–6.39). Association between CIS and invasive dental treatments was especially strong among those with PFO showing an OR of 6.26 (1.72–40.2). LPS/LTA did not differ between CIS patients and controls but displayed an increasing trend with periodontitis severity. Periodontitis and recent invasive dental procedures were associated with CIS after controlling for multiple confounders. However, the role of bacteremia as a mediator of this risk was not confirmed.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Evolution of Developing Palate in Mice 小鼠腭部发育的时空演变
IF 7.6 1区 医学
Journal of Dental Research Pub Date : 2024-04-15 DOI: 10.1177/00220345241232317
B. Wang, Z. Zhang, J. Zhao, Y. Ma, Y. Wang, N. Yin, T. Song
{"title":"Spatiotemporal Evolution of Developing Palate in Mice","authors":"B. Wang, Z. Zhang, J. Zhao, Y. Ma, Y. Wang, N. Yin, T. Song","doi":"10.1177/00220345241232317","DOIUrl":"https://doi.org/10.1177/00220345241232317","url":null,"abstract":"The intricate formation of the palate involves a series of complex events, yet its mechanistic basis remains uncertain. To explore major cell populations in the palate and their roles during development, we constructed a spatiotemporal transcription landscape of palatal cells. Palate samples from C57BL/6 J mice at embryonic days 12.5 (E12.5), 14.5 (E14.5), and 16.5 (E16.5) underwent single-cell RNA sequencing (scRNA-seq) to identify distinct cell subsets. In addition, spatial enhanced resolution omics-sequencing (stereo-seq) was used to characterize the spatial distribution of these subsets. Integrating scRNA-seq and stereo-seq with CellTrek annotated mesenchymal and epithelial cellular components of the palate during development. Furthermore, cellular communication networks between these cell subpopulations were analyzed to discover intercellular signaling during palate development. From the analysis of the middle palate, both mesenchymal and epithelial populations were spatially segregated into 3 domains. The middle palate mesenchymal subpopulations were associated with tooth formation, ossification, and tissue remodeling, with initial state cell populations located proximal to the dental lamina. The nasal epithelium of the palatal shelf exhibited richer humoral immune responses than the oral side. Specific enrichment of Tgfβ3 and Pthlh signals in the midline epithelial seam at E14.5 suggested a role in epithelial–mesenchymal transition. In summary, this study provides high-resolution transcriptomic information, contributing to a deeper mechanistic understanding of palate biology and pathophysiology.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":null,"pages":null},"PeriodicalIF":7.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信