Journal of Drug TargetingPub Date : 2025-06-01Epub Date: 2025-01-03DOI: 10.1080/1061186X.2024.2445737
Jiyaur Rahaman, Dhrubojyoti Mukherjee
{"title":"Insulin for oral bone tissue engineering: a review on innovations in targeted insulin-loaded nanocarrier scaffold.","authors":"Jiyaur Rahaman, Dhrubojyoti Mukherjee","doi":"10.1080/1061186X.2024.2445737","DOIUrl":"10.1080/1061186X.2024.2445737","url":null,"abstract":"<p><p>The occurrence of oral bone tissue degeneration and bone defects by osteoporosis, tooth extraction, obesity, trauma, and periodontitis are major challenges for clinicians. Traditional bone regeneration methods often come with limitations such as donor site morbidity, limitation of special shape, inflammation, and resorption of the implanted bone. The treatment oriented with biomimetic bone materials has achieved significant attention recently. In the oral bone tissue engineering arena, insulin has gained considerable attention among all the known biomaterials for osteogenesis and angiogenesis. It also exhibits osteogenic and angiogenic properties by interacting with insulin receptors on osteoblasts. Insulin influences bone remodelling both directly and indirectly. It acts directly through the PI3K/Akt and MAPK signalling pathways and indirectly by modulating the RANK/RANKL/OPG pathway, which helps reduce bone resorption. The current review reports the role of insulin in bone remodelling and bone tissue regeneration in the oral cavity in the form of scaffolds and nanomaterials. Different insulin delivery systems, utilising nanomaterials and scaffolds functionalised with polymeric biomaterials have been explored for oral bone tissue regeneration. The review put forward a theoretical basis for future research in insulin delivery in the form of scaffolds and composite materials for oral bone tissue regeneration.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"648-665"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Delivery vehicles for light-mediated drug delivery: microspheres, microbots, and nanoparticles: a review.","authors":"Engi Nadia Massoud, Mariana Katharine Hebert, AishwaryaRaksha Siddharthan, Tyler Ferreira, Abid Neron, Mary Goodrow, Tracie Ferreira","doi":"10.1080/1061186X.2024.2446636","DOIUrl":"10.1080/1061186X.2024.2446636","url":null,"abstract":"<p><p>This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infra-red (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release. Furthermore, this review discusses the significance of these drug delivery vehicles towards a spectrum of diverse applications spanning gene therapy, cancer treatment, diagnostics, and microsurgery, and the materials used in the fabrication of these vehicles encompassing polymers, ceramics, and lipids. Moreover, the review analyses the challenges and limitations of such drug delivery vehicles as areas of improvement to provide researchers with valuable insights for addressing current obstacles in the progression of drug delivery. Overall, this review underscores the potential of light-mediated drug delivery to revolutionise healthcare and personalised medicine, providing precise, targeted, and effective therapeutic interventions.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"691-703"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A state-of-the-art review of the recent advances in drug delivery systems for different therapeutic agents in periodontitis.","authors":"Mehrnaz Fayazi, Mitra Rostami, Masoud Amiri Moghaddam, Kamyar Nasiri, Azadeh Tadayonfard, Mohammadreza Behnam Roudsari, Hani Moslem Ahmad, Zahra Parhizgar, Amirhossein Majbouri Yazdi","doi":"10.1080/1061186X.2024.2445051","DOIUrl":"10.1080/1061186X.2024.2445051","url":null,"abstract":"<p><p>Periodontitis (PD) is a chronic gum illness that may be hard to cure for a number of reasons, including the fact that no one knows what causes it, the side effects of anti-microbial treatment, and how various kinds of bacteria interact with one another. As a result, novel therapeutic approaches for PD treatment must be developed. Additionally, supplementary antibacterial regimens, including local and systemic medication administration of chemical agents, are necessary for deep pockets to assist with mechanical debridement of tooth surfaces. As our knowledge of periodontal disease and drug delivery systems (DDSs) grows, new targeted delivery systems like extracellular vesicles, lipid-based nanoparticles (NPs), metallic NPs, and polymer NPs have been developed. These systems aim to improve the targeting and precision of PD treatments while reducing the systemic side effects of antibiotics. Nanozymes, photodermal therapy, antibacterial metallic NPs, and traditional PD therapies have all been reviewed in this research. Medicinal herbs, antibiotics, photothermal therapy, nanozymes, antibacterial metallic NPs, and conventional therapies for PD have all been examined in this research. After that, we reviewed the key features of many innovative DDSs and how they worked for PD therapy. Finally, we have discussed the advantages and disadvantages of these DDSs.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"612-647"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142854357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding the complex web: cellular and molecular interactions in the lung tumour microenvironment.","authors":"Bahjat Saeed Issa, Ayat Hussein Adhab, Morug Salih Mahdi, Ashishkumar Kyada, Subbulakshmi Ganesan, Deepak Bhanot, K Satyam Naidu, Sharnjeet Kaur, Aseel Salah Mansoor, Usama Kadem Radi, Nasr Saadoun Abd, Muthena Kariem","doi":"10.1080/1061186X.2024.2445772","DOIUrl":"10.1080/1061186X.2024.2445772","url":null,"abstract":"<p><p>The lung tumour microenvironment (TME) or stroma is a dynamic space of numerous cells and their released molecules. This complicated web regulates tumour progression and resistance to different modalities. Lung cancer cells in conjunction with their stroma liberate a wide range of factors that dampen antitumor attacks by innate immunity cells like natural killer (NK) cells and also adaptive responses by effector T cells. These factors include numerous growth factors, exosomes and epigenetic regulators, and also anti-inflammatory cytokines. Understanding the intricate interactions between tumour cells and various elements within the lung TME, such as immune and stromal cells can help provide novel strategies for better management and treatment of lung malignancies. The current article discusses the complex network of cells and signalling molecules, which mediate communications in lung TME. By elucidating these multifaceted interactions, we aim to provide insights into potential therapeutic targets and strategies for lung cancer treatment.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"666-690"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogel doped with sinomenine-CeO<sub>2</sub> nanoparticles for sustained intra-articular therapy in knee osteoarthritis.","authors":"Chuanyi Sheng, Baorong Zhu, Xiaomei Lin, Hongyuan Shen, Zhonghua Wu, Jinjun Shi, Liang Ge","doi":"10.1080/1061186X.2024.2449488","DOIUrl":"10.1080/1061186X.2024.2449488","url":null,"abstract":"<p><p>In this study, we developed an intra-articular injectable hydrogel drug depot (SMN-CeO<sub>2</sub>@G) for sustained OA treatment. This hydrogel system, which carries sinomenine-loaded cerium dioxide nanoparticles (SMN-CeO<sub>2</sub>), enhances anti-inflammatory and anti-apoptotic effects within the joint cavity. SMN-CeO<sub>2</sub>@G features a three-dimensional network structure with an approximate pore size of 10 μm, stably encapsulating SMN-CeO<sub>2</sub> nanoparticles (∼75 nm). Under hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) exposure and simulated mechanical stress, SMN-CeO<sub>2</sub>@G achieves a cumulative SMN release of 44.72 ± 7.83% over 48 hours, demonstrating controlled release capabilities. At an SMN concentration of 0.5 μg/mL, SMN-CeO<sub>2</sub>@G significantly enhances proliferation, reduces apoptosis, and lowers matrix metalloproteinases-13 (MMP-13) secretion in IL-1β-induced ATDC5 chondrocytes. In the ATDC5-RAW264.7 co-culture model, SMN-CeO<sub>2</sub>@G effectively reduces reactive oxygen species (ROS) levels, apoptosis (∼20%), and MMP13 concentrations (24.3 ± 3.1 ng/mL) in chondrocytes, likely due to the promotion of macrophages M2 polarisation. In anti-OA efficacy studies, a single intra-articular injection of SMN-CeO<sub>2</sub>@G significantly reduces osteophyte formation, promotes subchondral bone normalisation, alleviates pain sensitivity, and lowers serum IL-1β (59.3 ± 2.4 pg/mL) and MMP-13 (23.6 ± 1.7 ng/mL) levels in OA model rats. SMN-CeO<sub>2</sub>@G also achieves prolonged retention in the synovial fluid, with 6.7 ± 2.8% SMN still detectable at 72 hours post-injection, a factor crucial for sustained therapeutic effect. Overall, SMN-CeO<sub>2</sub>@G presents a promising tool for intra-articular OA treatment.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"804-816"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-06-01Epub Date: 2025-01-06DOI: 10.1080/1061186X.2024.2447793
Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi
{"title":"Nanotransethosomal dual-drug loaded gel of methotrexate and mangiferin as a potent synergistic intervention for rheumatoid arthritis via transdermal delivery.","authors":"Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi","doi":"10.1080/1061186X.2024.2447793","DOIUrl":"10.1080/1061186X.2024.2447793","url":null,"abstract":"<p><p>The goal of this study is to assess the potential advantages of utilising methotrexate (MTH), and mangiferin (MFR), in nanoparticulate configuration which is transethosomes (TRS), which could result in increased stability and solubility, as well as improved infiltration into the arthritic tissues under investigation. The synthesised MTH-MFR-TRS demonstrated a particle size of 151.7 nm and a PDI of 0.1199. Additionally, the zeta potential was observed to be favourable at -30.43 mV. Supplementary evaluations were performed, comprising transmission electron microscopy (TEM), confocal microscopy and skin permeation analysis. The CLSM study revealed that the MTH-MFR-TRS gel formulation demonstrated enhanced permeation of MTH and MFR through the skin layers in comparison with MTH-MFR suspension gel. The results of the <i>in vivo</i> investigation indicate that the MTH-MFR-TRS gel displays favourable anti-arthritic characteristics compared to the diclofenac standard gel. The aforementioned phenomenon was evidenced by means of histopathological investigations and radiographic scrutiny. The study at hand has validated the utility of TRS vesicles as a carrier for the transdermal administration of MTH and MFR, thereby offering a promising therapeutic approach for the management of rheumatoid arthritis.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"773-792"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the osteogenic potential of bone-targeted daidzein loaded hydroxyapatite nanoparticles for postmenopausal osteoporosis: pharmacodynamic, biochemical, and genotoxicity evaluations.","authors":"Namrata Gautam, Prashant Sharma, Antra Chaudhary, Surajita Sahu, Divya Vohora, Monalisa Mishra, Debopriya Dutta, Manish Singh, Sushama Talegaonkar","doi":"10.1080/1061186X.2025.2503499","DOIUrl":"10.1080/1061186X.2025.2503499","url":null,"abstract":"<p><p>Bisphosphonates and Hormone Replacement Therapy are the primary therapeutic interventions for Postmenopausal Osteoporosis (PMO), however, associated repercussions limit their usage. To address this challenge, we hypothesised the co-delivery of hydroxyapatite (HAP) with daidzein (DZ) for synergistic treatment of PMO. Propounding this bimodal approach, daidzein-loaded hydroxyapatite nanoparticles (DZHAPNPs) were prepared leveraging the oestrogenic properties of DZ while utilising HAP to facilitate biomineralization. The osteogenic potential of developed nanoparticles was validated through <i>in vitro</i> experiments on MG-63 cells and <i>in vivo</i> studies employing a \"4-vinyl cyclohexene diepoxide-induced menopausal-mice model\". DZHAPNPs exhibited pronounced pro-osteogenic activity, evidenced by enhanced (155.49%) alkaline phosphatase (ALP) activity in MG-63 cells. Additionally, cellular uptake studies confirmed their internalisation and targeted delivery. Following menopause induction and treatment, the mice underwent radiography, histology, micro-computed tomography (micro-CT) analysis, and biochemical evaluations. A significant reduction (<i>p</i> < 0.001) in biomarkers i.e., β-CTx, BALP, and TRAP-5b, post-treatment showed a substantial influence of DZ and DZHAPNPs. Better bone architectural parameters and bone mineral density in micro-CT analysis served as proof of the hypothesis. Also, the cellular biocompatibility of nanoparticles was confirmed through genotoxicity tests performed on the <i>Drosophila melanogaster</i>. The noteworthy results of the research substantiated the synergistic influence of DZ and HAPNPs in resilience and bone strength maintenance.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-16"},"PeriodicalIF":4.3,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144022518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevser Bal, Sibel Küçükertuğrul Çelik, Sema Şentürk, Özlem Kaplan, Emine Büşra Eker, Mehmet Koray Gök
{"title":"Recent progress in chitosan-based nanoparticles for drug delivery: a review on modifications and therapeutic potential.","authors":"Kevser Bal, Sibel Küçükertuğrul Çelik, Sema Şentürk, Özlem Kaplan, Emine Büşra Eker, Mehmet Koray Gök","doi":"10.1080/1061186X.2025.2502956","DOIUrl":"10.1080/1061186X.2025.2502956","url":null,"abstract":"<p><p>Chitosan, obtained from chitin by deacetylation, is a versatile biopolymer known for its biocompatibility, biodegradability and environmental friendliness. Combined with its chemical and physical modifiability, these properties have made chitosan an important material in biomedical and pharmaceutical fields, especially in drug delivery systems. Chitosan-based nanomaterials exhibit enhanced functions through various chemical modifications such as thiolation, acetylation, carboxylation and phosphorylation, as well as through physical and enzymatic approaches. These modifications address inherent limitations such as poor solubility, limited acid resistance and insufficient mechanical strength, expanding the applications of chitosan in tissue engineering, gene therapy, vaccine delivery, wound healing and bioimaging. This review provides an in-depth analysis of the chemical structure, physicochemical properties and modification strategies of chitosan. It also explores current methodologies for preparing chitosan nanoparticles, along with drug loading and release techniques. Various targeting strategies employed in chitosan-based delivery systems are examined in detail. To illustrate the clinical relevance of these approaches, representative examples from recent therapeutic studies are included. Moreover, it highlights future research directions and the innovation potential of chitosan-based materials.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-28"},"PeriodicalIF":4.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breast cancer cell targeting of L-leucine-PLGA conjugated hybrid solid lipid nanoparticles of betulin via L-amino acid transport system-1.","authors":"Shilpa Amit Gajbhiye, Moreshwar P Patil","doi":"10.1080/1061186X.2025.2500036","DOIUrl":"10.1080/1061186X.2025.2500036","url":null,"abstract":"<p><p>The aim of fabricating hybrid solid lipid nanoparticles (HSLN) was to enhance the delivery of betulin to triple negative breast cancer cells through the intravenous route <i>via</i> L-amino transporter system-1, using L-leucine-PLGA conjugate (Conj-HSLN) by hot high pressure homogenisation method. Betulin (BN), having potent anticancer and antioxidant activity, faces challenges due to poor water solubility and permeability, affecting its bioavailability. The results revealed Conj-HSLN with particle size 318.3 ± 0.25 nm. The percent cumulative BN release from Conj-HSLN was 57.763%, 24h. The cytotoxicity study in MB-MDA-231 cell depicts, LD<sub>50</sub> 67.73 µg/ml in Conj-HSLN. Pharmacokinetics study reveals enhanced C<sub>max</sub> and half-life in Conj-HSLN (32.12 ± 0.25 µg/ml, 4.72 ± 0.53 h) than raw BN (1.31 ± 0.21 µg/ml, 7.54 ± 0.34 h). Enhanced distribution at tumour site (11.5967% ID, 2h) in Conj-HSLN signifies the role of L-leucine in the transport system. Pharmacodynamic study shows mean tumour volume of 765.3 ± 85.884, and 1450.01 ± 219.361 mm<sup>3</sup> in Conj-HSLN, and BN, respectively, at 3<sup>rd</sup> week of treatment. Standardised uptake value attributed reduced glucose uptake, due to inhibited tumour growth and proliferation, confirmed by tumour biomarkers assay, VEGF and Caspase-9. In conclusion, the targeted controlled release L-leucine conjugated-BN loaded HSLN is stable, safe, and effective against triple negative breast cancers.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-30"},"PeriodicalIF":4.3,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143995679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hedgehog signalling pathway inhibitors in the treatment of basal cell carcinoma: an updated review.","authors":"Adela Markota Cagalj, Mislav Glibo, Valentina Karin-Kujundzic, Alan Serman, Semir Vranic, Ljiljana Serman, Lucija Skara Abramovic, Zrinka Bukvic Mokos","doi":"10.1080/1061186X.2025.2496470","DOIUrl":"https://doi.org/10.1080/1061186X.2025.2496470","url":null,"abstract":"<p><p>Basal cell carcinoma (BCC) is the most common type of skin cancer that usually appears in sun-exposed body regions such as the head, trunk, and extremities. There are four main clinicopathological subtypes of BCC: nodular, superficial, morpheaform, and fibroepithelial. BCC's molecular basis includes inherited genetic susceptibility and somatic mutations, often induced by exposure to UV radiation. The aberrant activation of the hedgehog (Hh) signalling pathway, caused by mutations in the Hh components, plays a central role in the molecular pathogenesis of this carcinoma. This led to the development of Hh signalling pathway inhibitors as a new treatment option for patients with advanced disease. In this review, we summarise BCC's clinical presentation and histopathology and present knowledge on the most studied Hh signalling inhibitors, vismodegib and sonidegib, and other inhibitors of this signalling, such as itraconazole, patidegib, taladegib, and arsenic trioxide, in the treatment of BCC. We also present the most common Hh signalling inhibitor adverse events and their management options, which could improve patients' quality of life during treatment.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-21"},"PeriodicalIF":4.3,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144027640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}