{"title":"Decoding the complex web: cellular and molecular interactions in the lung tumour microenvironment.","authors":"Bahjat Saeed Issa, Ayat Hussein Adhab, Morug Salih Mahdi, Ashishkumar Kyada, Subbulakshmi Ganesan, Deepak Bhanot, K Satyam Naidu, Sharnjeet Kaur, Aseel Salah Mansoor, Usama Kadem Radi, Nasr Saadoun Abd, Muthena Kariem","doi":"10.1080/1061186X.2024.2445772","DOIUrl":"10.1080/1061186X.2024.2445772","url":null,"abstract":"<p><p>The lung tumour microenvironment (TME) or stroma is a dynamic space of numerous cells and their released molecules. This complicated web regulates tumour progression and resistance to different modalities. Lung cancer cells in conjunction with their stroma liberate a wide range of factors that dampen antitumor attacks by innate immunity cells like natural killer (NK) cells and also adaptive responses by effector T cells. These factors include numerous growth factors, exosomes and epigenetic regulators, and also anti-inflammatory cytokines. Understanding the intricate interactions between tumour cells and various elements within the lung TME, such as immune and stromal cells can help provide novel strategies for better management and treatment of lung malignancies. The current article discusses the complex network of cells and signalling molecules, which mediate communications in lung TME. By elucidating these multifaceted interactions, we aim to provide insights into potential therapeutic targets and strategies for lung cancer treatment.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"666-690"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hydrogel doped with sinomenine-CeO<sub>2</sub> nanoparticles for sustained intra-articular therapy in knee osteoarthritis.","authors":"Chuanyi Sheng, Baorong Zhu, Xiaomei Lin, Hongyuan Shen, Zhonghua Wu, Jinjun Shi, Liang Ge","doi":"10.1080/1061186X.2024.2449488","DOIUrl":"10.1080/1061186X.2024.2449488","url":null,"abstract":"<p><p>In this study, we developed an intra-articular injectable hydrogel drug depot (SMN-CeO<sub>2</sub>@G) for sustained OA treatment. This hydrogel system, which carries sinomenine-loaded cerium dioxide nanoparticles (SMN-CeO<sub>2</sub>), enhances anti-inflammatory and anti-apoptotic effects within the joint cavity. SMN-CeO<sub>2</sub>@G features a three-dimensional network structure with an approximate pore size of 10 μm, stably encapsulating SMN-CeO<sub>2</sub> nanoparticles (∼75 nm). Under hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) exposure and simulated mechanical stress, SMN-CeO<sub>2</sub>@G achieves a cumulative SMN release of 44.72 ± 7.83% over 48 hours, demonstrating controlled release capabilities. At an SMN concentration of 0.5 μg/mL, SMN-CeO<sub>2</sub>@G significantly enhances proliferation, reduces apoptosis, and lowers matrix metalloproteinases-13 (MMP-13) secretion in IL-1β-induced ATDC5 chondrocytes. In the ATDC5-RAW264.7 co-culture model, SMN-CeO<sub>2</sub>@G effectively reduces reactive oxygen species (ROS) levels, apoptosis (∼20%), and MMP13 concentrations (24.3 ± 3.1 ng/mL) in chondrocytes, likely due to the promotion of macrophages M2 polarisation. In anti-OA efficacy studies, a single intra-articular injection of SMN-CeO<sub>2</sub>@G significantly reduces osteophyte formation, promotes subchondral bone normalisation, alleviates pain sensitivity, and lowers serum IL-1β (59.3 ± 2.4 pg/mL) and MMP-13 (23.6 ± 1.7 ng/mL) levels in OA model rats. SMN-CeO<sub>2</sub>@G also achieves prolonged retention in the synovial fluid, with 6.7 ± 2.8% SMN still detectable at 72 hours post-injection, a factor crucial for sustained therapeutic effect. Overall, SMN-CeO<sub>2</sub>@G presents a promising tool for intra-articular OA treatment.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"804-816"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-06-01Epub Date: 2025-01-06DOI: 10.1080/1061186X.2024.2447793
Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi
{"title":"Nanotransethosomal dual-drug loaded gel of methotrexate and mangiferin as a potent synergistic intervention for rheumatoid arthritis via transdermal delivery.","authors":"Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi","doi":"10.1080/1061186X.2024.2447793","DOIUrl":"10.1080/1061186X.2024.2447793","url":null,"abstract":"<p><p>The goal of this study is to assess the potential advantages of utilising methotrexate (MTH), and mangiferin (MFR), in nanoparticulate configuration which is transethosomes (TRS), which could result in increased stability and solubility, as well as improved infiltration into the arthritic tissues under investigation. The synthesised MTH-MFR-TRS demonstrated a particle size of 151.7 nm and a PDI of 0.1199. Additionally, the zeta potential was observed to be favourable at -30.43 mV. Supplementary evaluations were performed, comprising transmission electron microscopy (TEM), confocal microscopy and skin permeation analysis. The CLSM study revealed that the MTH-MFR-TRS gel formulation demonstrated enhanced permeation of MTH and MFR through the skin layers in comparison with MTH-MFR suspension gel. The results of the <i>in vivo</i> investigation indicate that the MTH-MFR-TRS gel displays favourable anti-arthritic characteristics compared to the diclofenac standard gel. The aforementioned phenomenon was evidenced by means of histopathological investigations and radiographic scrutiny. The study at hand has validated the utility of TRS vesicles as a carrier for the transdermal administration of MTH and MFR, thereby offering a promising therapeutic approach for the management of rheumatoid arthritis.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"773-792"},"PeriodicalIF":4.3,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel therapeutic approaches for non-small cell lung cancer: an updated view.","authors":"Niloufar Orooji, Shabnam Babaei, Manouchehr Fadaee, Hajar Abbasi-Kenarsari, Majid Eslami, Tohid Kazemi, Bahman Yousefi","doi":"10.1080/1061186X.2025.2489986","DOIUrl":"https://doi.org/10.1080/1061186X.2025.2489986","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) continues to be one of the leading causes of cancer-related mortality globally. Most patients who undergo surgical procedures may encounter distant metastasis or local recurrence, necessitating supplementary treatments such as radiation therapy, chemotherapy, or targeted therapy as adjuvant alternatives. Recent advancements in molecular biology and immunotherapy have paved the way for innovative therapeutic approaches that target specific genetic mutations and promote the immune response against tumor cells. This review explores emerging therapies, including targeted therapies such as tyrosine kinase inhibitors (TKIs) for actionable mutations (e.g., EGFR, ALK, ROS1), as well as the role of immune checkpoint inhibitors (ICIs) that employ the body's immune system to combat cancer. Additionally, we discuss the potential of exosome therapies, as well as promising nanotherapeutic options for the treatment of NSCLC. This study attempts to provide a thorough overview of the changing landscape of NSCLC treatment and its implications for enhancing patient outcomes by presenting these innovative techniques.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-29"},"PeriodicalIF":4.3,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The potential use of bacteria and their derivatives as delivery systems for nanoparticles in the treatment of cancer.","authors":"Shiva Ahmadishoar, Samaa Mones Saeed, Morug Salih Mahdi, Waam Mohammed Taher, Mariem Alwan, Mahmod Jasem Jawad, Atheer Khdyair Hamad, Hossein Gandomkar","doi":"10.1080/1061186X.2025.2489979","DOIUrl":"https://doi.org/10.1080/1061186X.2025.2489979","url":null,"abstract":"<p><p>Cancer is a leading cause of mortality and morbidity worldwide. Nanomaterials, unique optical, magnetic, and electrical properties at the nanoscale (1-100 nm), have been engineered to improve drug capacity, bioavailability, and specificity in cancer treatment. These advancements address toxicity and lack of selectivity in conventional therapies, enabling precise targeting of cancer cells, the tumor microenvironment, and the immune system. Among emerging approaches, bacterial treatment shows promise due to its natural ability to target cancer and its diverse therapeutic mechanisms, which nanotechnology can further enhance. Bacteria-based drug delivery systems leverage bacteria's adaptability and survival strategies within the human body. Bacterial derivatives, such as bacterial ghosts (BGs), bacterial extracellular vesicles (BEVs), and dietary toxins, are recognized as effective biological nanomaterials capable of carrying nanoparticles (NPs). These systems have attracted increasing attention for their potential in targeted NP delivery for cancer treatment. This study explores the use of various bacteria and their byproducts as NP delivery vehicles, highlighting their potential in treating different types of cancer. By combining the strengths of nanotechnology and bacterial therapy, these innovative approaches aim to revolutionize cancer treatment with improved precision and efficacy.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-54"},"PeriodicalIF":4.3,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Punith M, Rajamma A J, Sateesha S B, Durgashree Diwakar, Girija E K, Chethan Kumar K B, Ankith N A, Mousam Bhowmik, Manjunatha P M
{"title":"Design and formulation of fast-dissolving microneedles for the rapid transdermal delivery of lorazepam.","authors":"Punith M, Rajamma A J, Sateesha S B, Durgashree Diwakar, Girija E K, Chethan Kumar K B, Ankith N A, Mousam Bhowmik, Manjunatha P M","doi":"10.1080/1061186X.2025.2483720","DOIUrl":"10.1080/1061186X.2025.2483720","url":null,"abstract":"<p><p>This study investigates lorazepam-loaded dissolving microneedles (LMNs) as a fast-acting and minimally invasive treatment for status epilepticus. The LMNs were developed using a micro-moulding technique with an optimised combination of PVP K30, Dextran 40 and Pullulan. Their stability was confirmed through Fourier transform infra-red (FTIR) spectroscopy and X-ray diffraction (XRD) analysis. The Parafilm<sup>®</sup> membrane insertion test demonstrated 100% penetration efficiency, verifying their ability to effectively pierce the skin. Scanning electron microscopy (SEM) imaging revealed well-defined microneedles with precise dimensions (800 µm height, 200 µm base and 500 µm pitch). The LMNs rapidly dissolved in the subdermal layer of porcine skin. An <i>ex vivo</i> drug diffusion study showed that 3-5% of the encapsulated lorazepam was released within 30 min, with a cumulative release of 79.3% over 24 h. An acute dermal irritation study confirmed the biocompatibility and skin tolerance of the LMNs. Additionally, an <i>in vivo</i> anti-convulsant efficacy study in Albino Wistar rats subjected to maximal electroshock seizures demonstrated significant anticonvulsant effects (<i>p</i> < .05), confirming efficient systemic delivery of lorazepam. These findings highlight LMNs as a rapid-acting, non-invasive transdermal drug delivery system for managing status epilepticus, particularly in ambulatory care settings.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-13"},"PeriodicalIF":4.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143710300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Wang, Shang Li, Tianqi Zhao, Xixi Pan, Liangxue Wang
{"title":"Effect of insulin aspart combined with insulin detemir and metformin on islet function in newly diagnosed type 2 diabetes mellitus.","authors":"Hui Wang, Shang Li, Tianqi Zhao, Xixi Pan, Liangxue Wang","doi":"10.1080/1061186X.2025.2477074","DOIUrl":"10.1080/1061186X.2025.2477074","url":null,"abstract":"<p><p>This trial evaluated the effects of insulin aspart (IAsp) and insulin detemir and metformin on islet function in newly diagnosed type 2 diabetes mellitus (T2DM). A total of 96 T2DM patients were randomised into the control group (insulin detemir + metformin treatment) and the study group (insulin detemir + metformin + IAsp treatment), with 48 cases each. The study compared clinical outcomes, as well as changes in fasting plasma glucose (FPG), 2-hour postprandial blood glucose (PBG), glycated haemoglobin (HbA1c), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-β, quality of life, and sleep quality scores before and after treatment. Compared to the control group, the study group showed a higher total effective treatment rate, lower levels of FPG, 2-hour PBG, HbA1c, FINS, HOMA-IR, and sleep quality scores, while demonstrating higher HOMA-β and quality of life scores (all <i>p</i> < 0.05). Insulin detemir + metformin + IAsp was effective in treating T2DM, significantly enhancing insulin function and blood glucose levels, quality of life, and sleep quality. This combination therapy, though not commonly utilised in newly diagnosed T2DM patients, offers a novel therapeutic approach in clinical practice.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-5"},"PeriodicalIF":4.3,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-04-01Epub Date: 2024-11-18DOI: 10.1080/1061186X.2024.2428966
Ramkrishna Y Patle, Rajendra S Dongre
{"title":"Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy.","authors":"Ramkrishna Y Patle, Rajendra S Dongre","doi":"10.1080/1061186X.2024.2428966","DOIUrl":"10.1080/1061186X.2024.2428966","url":null,"abstract":"<p><p>3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"437-457"},"PeriodicalIF":4.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic cancer treatment using porphyrin-based metal-organic Frameworks for photodynamic and photothermal therapy.","authors":"Mahsa Akbari Oryani, Mojtaba Tarin, Leila Rahnama Araghi, Farangis Rastin, Hossein Javid, Alireza Hashemzadeh, Mehdi Karimi-Shahri","doi":"10.1080/1061186X.2024.2433551","DOIUrl":"10.1080/1061186X.2024.2433551","url":null,"abstract":"<p><p>Recent advancements in multifunctional nanomaterials for cancer therapy have highlighted porphyrin-based metal-organic frameworks (MOFs) as promising candidates due to their unique properties and versatile applications. This overview focuses on the use of porphyrin-based MOFs for combined photodynamic therapy (PDT) and photothermal therapy (PTT) in cancer treatment. Porphyrin-based MOFs offer high porosity, tuneable structures, and excellent stability, making them ideal for drug delivery and therapeutic applications. The incorporation of porphyrin molecules into the MOF framework enhances light absorption and energy transfer, leading to improved photodynamic and photothermal effects. Additionally, the porosity of MOFs allows for the encapsulation of therapeutic agents, further enhancing efficacy. In PDT, porphyrin-based MOFs generate reactive oxygen species (ROS) upon light activation, destroying cancer cells. The photothermal properties enable the conversion of light energy into heat, resulting in localised hyperthermia and tumour ablation. The combination of PDT and PTT in a single platform offers synergistic effects, leading to better therapeutic outcomes, reduced side effects, and improved selectivity. This dual-modal treatment strategy provides precise spatiotemporal control over the treatment process, paving the way for next-generation therapeutics with enhanced efficacy and reduced side effects. Further research and optimisation are needed for clinical applications.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"473-491"},"PeriodicalIF":4.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of Drug TargetingPub Date : 2025-04-01Epub Date: 2024-12-17DOI: 10.1080/1061186X.2024.2438884
Marco Vigo, Marina Placci, Silvia Muro
{"title":"Isoform-specific vs. isoform-universal drug targeting: a new targeting paradigm illustrated by new anti-ICAM-1 antibodies.","authors":"Marco Vigo, Marina Placci, Silvia Muro","doi":"10.1080/1061186X.2024.2438884","DOIUrl":"10.1080/1061186X.2024.2438884","url":null,"abstract":"<p><p>Drug targeting can be achieved by coupling drugs or their carriers to affinity molecules, mostly antibodies (Abs), which recognise specific protein targets. However, most proteins are not expressed in an exclusive configuration but as various isoforms. Hence, selected targeting molecules may fail to target with enough efficiency in clinical trials, which is overlooked. We illustrate this by targeting intercellular adhesion molecule 1 (ICAM-1), a cell-surface protein overexpressed in many pathologies. Most ICAM-1 targeting studies used Ab R6.5, which binds ICAM-1 domain 2 (D2). Yet, literature and our data show that D2 is frequently absent among ICAM-1 isoforms. We thus produced a battery of five new Abs (B4, B6, B11, C12 and G2) and tested their ability to recognise both full-length and -D2 ICAM-1. In solution, all Abs recognised both ICAM-1 forms (from 5.3 × 10<sup>11</sup> to 4.2 × 10<sup>12</sup> sum intensity/well). Coating them on nanocarriers (NCs) rendered G2 specific against -D2 ICAM-1 (4.2 × 10<sup>6</sup> NCs/well) while other Abs kept their dual recognition (from 6.4 × 10<sup>6</sup> to 2.2 × 10<sup>7</sup> NCs/well). All Abs induced NC intracellular uptake in respective cells (from 42% to 85%) and displayed good cross-species reactivity (from 4.4 × 10<sup>11</sup> to 2.6 × 10<sup>12</sup> sum intensity/well). These Abs represent valuable tools to target ICAM-1 and illustrate a new targeting paradigm that may improve classical strategies.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"562-574"},"PeriodicalIF":4.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142785824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}