Manojmouli C, T Y Pasha, Mohamed Rahamathulla, Gagana H P, Kavya B L, Gagana K M, Purushotham K N, Shalam M Hussain, Mohammed Muqtader Ahmed, Thippeswamy Boreddy Shivanandappa, Ismail Pasha
{"title":"Epidermal growth factor receptors unveiled: a comprehensive survey on mutations, clinical insights of global inhibitors, and emergence of heterocyclic derivatives as EGFR inhibitors.","authors":"Manojmouli C, T Y Pasha, Mohamed Rahamathulla, Gagana H P, Kavya B L, Gagana K M, Purushotham K N, Shalam M Hussain, Mohammed Muqtader Ahmed, Thippeswamy Boreddy Shivanandappa, Ismail Pasha","doi":"10.1080/1061186X.2024.2449495","DOIUrl":"10.1080/1061186X.2024.2449495","url":null,"abstract":"<p><p>Mutations that overexpress the epidermal growth factor receptor (EGFR) are linked to cancers like breast (15-20%), head and neck (10-15%), colorectal (5-8%), and non-small cell lung cancer (10-50%), especially in East Asian populations. EGFR activation stimulates 'RAS/RAF/MEK/ERK, PI3K/Akt, and MAPK' pathways, which enhance cell division, survival, angiogenesis, and tumour growth while inhibiting apoptosis and metastasis. Secondary mutations (e.g. 'T790M', 'C797S'), off-target effects, and resistance due to alternate pathway activation reduce the efficacy of currently available EGFR inhibitors. To address these issues, 'novel heterocyclic inhibitors with structural versatility were developed to improve selectivity and binding affinity for mutant EGFR forms'. These new EGFR reduce side effects, enhance pharmacokinetics, and enhance therapeutic efficacy at low concentrations. This review focuses on 'EGFR mutations in various cancers' detailing the biochemical effects, clinical profiles, and binding interactions of globally approved EGFR inhibitors. Furthermore, it focuses into recent progress in nano-formulations and the development of heterocyclic derivatives that can successfully 'target mutant EGFRs' through varied synthesis methods. These inhibitors have the potential to have better binding affinities, selectivity's, and less side-effect. Further research required to refine the structures and develop nanoformulations of EGFR-targeted therapeutics in order to improve therapeutic efficiency and, provide more effective cancer treatments.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-19"},"PeriodicalIF":4.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The biomedical applications of artificial intelligence: an overview of decades of research.","authors":"Sweet Naskar, Suraj Sharma, Ketousetuo Kuotsu, Suman Halder, Goutam Pal, Subhankar Saha, Shubhadeep Mondal, Ujjwal Kumar Biswas, Mayukh Jana, Sunirmal Bhattacharjee","doi":"10.1080/1061186X.2024.2448711","DOIUrl":"10.1080/1061186X.2024.2448711","url":null,"abstract":"<p><p>A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact. The implementation of AI in biomedical fields faces challenges such as ethical and privacy concerns, lack of awareness, technology unreliability, and professional liability. A brief discussion is given of the AI techniques, which include Virtual screening (VS), DL, ML, Hidden Markov models (HMMs), Neural networks (NNs), Generative models (GMs), Molecular dynamics (MD), and Structure-activity relationship (SAR) models. The study explores the application of AI in biomedical fields, highlighting its enhanced predictive accuracy, treatment efficacy, diagnostic efficiency, faster decision-making, personalised treatment strategies, and precise medical interventions.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-32"},"PeriodicalIF":4.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advancements in colorectal cancer immunotherapy: from CAR-T cells to exosome-based therapies.","authors":"Sepideh Arabi, Manouchehr Fadaee, Tohid Kazemi, Mohammadreza Rahmani","doi":"10.1080/1061186X.2024.2449482","DOIUrl":"10.1080/1061186X.2024.2449482","url":null,"abstract":"<p><p>Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC. CAR-T cell therapy, although effective in treating blood cancers, encounters obstacles when used against solid tumours such as CRC. These obstacles include the presence of an immunosuppressive tumour microenvironment and a scarcity of tumour-specific antigens. Nevertheless, novel strategies like dual-receptor CAR-T cells and combination therapy involving cytokines have demonstrated promise in surmounting these obstacles. Exosome-based immunotherapy is a promising approach for targeted delivery of therapeutic drugs to tumour cells, with high specificity and minimal off-target effects. However, there are still obstacles to overcome in the field, such as resistance to treatment, adverse effects associated with the immune system, and the necessity for more individualised methods. The current research is focused on enhancing these therapies, enhancing the results for patients, and ultimately incorporating these innovative immunotherapeutic approaches into the standard treatment protocols for CRC.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-12"},"PeriodicalIF":4.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green synthesis of magnesium oxide nanoparticles using the extract of <i>Falcaria vulgaris</i> to enhance the healing of burn wounds.","authors":"Mozafar Khazaei, Mohammadali Meskaraf-Asadabadi, Fatemeh Khazaei, Sepide Kadivarian, Elham Ghanbari","doi":"10.1080/1061186X.2024.2445744","DOIUrl":"10.1080/1061186X.2024.2445744","url":null,"abstract":"<p><p>Treating burn lesions has always been challenging because any product should be cheap, accessible, and have anti-bacterial commodities and tissue regeneration properties. The green synthesis of magnesium oxide nanoparticles (GS-MgONPs) can create an optimal prospect that is safe with low toxicity in biological tissue and better safety for application while including the antibacterial effect. This recent study aimed to evaluate the effectiveness of burn wound treatment using GS-MgONPs in rats. GS-MgONPs were synthesised for the first time using a Falcaria vulgaris extract (FVE) and characterised. Thirty male Wistar rats were divided into five groups: An untreated group, conventional product treated group, GS-MgONPs (1 wt%), GS-MgONPs (3 wt%) and 5. FVE (1 wt%). Treatments commenced immediately following burn induction and were administered daily for a duration of 21 d. GS-MgONPs showed a spherical morphology with a diameter of less than 100 nm. The NPs (1% and 3 wt%) and FVE demonstrated significant growth inhibition against Staphylococcus aureus while showing no cytotoxic effects on human fibroblast cells. The proposed subjects treated with 1 wt% and 3 wt% GS-MgONPs were able to significantly increase the rate of wound closure (p < 0.05). Histological observations revealed that collagen formation and epithelial regeneration were more pronounced in the groups receiving 1 wt% and 3 wt% MgONPs. These results indicate that GS-MgONPs effectively enhance the regeneration process.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-12"},"PeriodicalIF":4.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi
{"title":"Nanotransethosomal dual-drug loaded gel of methotrexate and mangiferin as a potent synergistic intervention for rheumatoid arthritis via transdermal delivery.","authors":"Syeda Nashvia Adin, Isha Gupta, Mohd Aqil, Mohd Mujeeb, Abul Kalam Najmi","doi":"10.1080/1061186X.2024.2447793","DOIUrl":"10.1080/1061186X.2024.2447793","url":null,"abstract":"<p><p>The goal of this study is to assess the potential advantages of utilising methotrexate (MTH), and mangiferin (MFR), in nanoparticulate configuration which is transethosomes (TRS), which could result in increased stability and solubility, as well as improved infiltration into the arthritic tissues under investigation. The synthesised MTH-MFR-TRS demonstrated a particle size of 151.7 nm and a PDI of 0.1199. Additionally, the zeta potential was observed to be favourable at -30.43 mV. Supplementary evaluations were performed, comprising transmission electron microscopy (TEM), confocal microscopy and skin permeation analysis. The CLSM study revealed that the MTH-MFR-TRS gel formulation demonstrated enhanced permeation of MTH and MFR through the skin layers in comparison with MTH-MFR suspension gel. The results of the <i>in vivo</i> investigation indicate that the MTH-MFR-TRS gel displays favourable anti-arthritic characteristics compared to the diclofenac standard gel. The aforementioned phenomenon was evidenced by means of histopathological investigations and radiographic scrutiny. The study at hand has validated the utility of TRS vesicles as a carrier for the transdermal administration of MTH and MFR, thereby offering a promising therapeutic approach for the management of rheumatoid arthritis.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-20"},"PeriodicalIF":4.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142894668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arfa Nasrine, Sourav Mohanto, Soumya Narayana, Mohammed Gulzar Ahmed
{"title":"Enhanced pharmacokinetic approach for anastrozole in macromolecule-based silk fibroin nanoparticles incorporated <i>in situ</i> injectables for estrogen-positive breast cancer therapy.","authors":"Arfa Nasrine, Sourav Mohanto, Soumya Narayana, Mohammed Gulzar Ahmed","doi":"10.1080/1061186X.2024.2449486","DOIUrl":"https://doi.org/10.1080/1061186X.2024.2449486","url":null,"abstract":"<p><p>Breast cancer (BC) is a substantial reason for cancer-related mortality among women across the globe. Anastrozole (ANS) is an effective orally administered hormonal therapy for estrogen+ (ER+) BC treatment. However, several side effects and pharmacokinetic limitations restricted its uses in BC treatment. Therefore, this study developed an <i>in situ</i> gelling injectable-loaded silk fibroin (SF)-ANS NPs, which offers sustained drug release and improved pharmacokinetic properties compared to conventional oral formulations. The optimized <i>in situ</i> gel (ISG) incorporated SF-ANS-NPs were developed, and the pharmacokinetic parameters were accessed in subcutaneous administration of NMU-induced Wistar albino rats. The results demonstrated that SF-ANS-NP-ISG exhibited a significantly higher C<sub>max</sub>, T<sub>max</sub>, and AUC compared to pure ANS suspension. In addition, tumor multiplicity (1.40 ± 0.66), tumor latency (75 ± 9.2 days), and incidence rate (90 ± 2.1%) were recorded, and post-treatment analysis reported a marked reduction in tumor volume and weight compared to positive control within 90 days of a single dose. The SF-ANS-NP-ISG treated group's histopathological assessment indicated a low-grade carcinoma, reduced epithelial hyperplasia, and haemorrhage in mammary tumor tissues compared to positive control. Thus, the SF-ANS-NPs-ISG investigated to overcome the pharmacokinetic limitations of ANS further exhibited targeted delivery and bioavailability compared to conventional techniques.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-28"},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review on anti-tumour lipid nano drug delivery systems of traditional Chinese medicine.","authors":"Ziwei Zhang, Rui Xiong, Qiyan Hu, Qiang Zhang, Shaozhen Wang, Yunyan Chen","doi":"10.1080/1061186X.2024.2448708","DOIUrl":"10.1080/1061186X.2024.2448708","url":null,"abstract":"<p><p>In recent years, the use of traditional Chinese medicine (TCM) in the treatment of cancer has received widespread attention. Treatment of tumours using TCM can effectively reduce the side effects of anti-tumour drugs, meanwhile to improve the treatment efficacy of patients. However, most of the active ingredients in TCM, such as saponins, alkaloids, flavonoids, volatile oils, etc., have defects such as low bioavailability and poor solubility in clinical application, which seriously restrict the application of TCM. Meanwhile, the encapsulation of TCM into lipid nano-delivery systems for cancer therapy has received much attention. Lipid nano-delivery systems are obtained by using phospholipids as the base material and adding other auxiliary materials under a certain preparation process, including, for example, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), microemulsions, and self-microemulsion drug delivery systems (SMEDDS), can resolve the application problems of TCM by improving the efficacy of active ingredients of TCM and reducing the toxicity of anti-tumour drugs. This paper focuses on the categories, development status, and research progress of lipid nano delivery system of TCM, aiming to provide a certain theoretical basis for further in-depth research and rational application of these systems.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-13"},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Delivery vehicles for light-mediated drug delivery: microspheres, microbots, and nanoparticles: a review.","authors":"Engi Nadia Massoud, Mariana Katharine Hebert, AishwaryaRaksha Siddharthan, Tyler Ferreira, Abid Neron, Mary Goodrow, Tracie Ferreira","doi":"10.1080/1061186X.2024.2446636","DOIUrl":"10.1080/1061186X.2024.2446636","url":null,"abstract":"<p><p>This review delves into the evolving landscape of mediated drug delivery, focusing on the versatility of a variety of drug delivery vehicles such as microspheres, microbots, and nanoparticles (NPs). The review also expounds on the critical components and mechanisms for light-mediated drug delivery, including photosensitizers and light sources such as visible light detectable by the human eye, ultraviolet (UV) light, shorter wavelengths than visible light, and near-infra-red (NIR) light, which has longer wavelength than visible light. This longer wavelength has been implemented in drug delivery for its ability to penetrate deeper tissues and highlighted for its role in precise and controlled drug release. Furthermore, this review discusses the significance of these drug delivery vehicles towards a spectrum of diverse applications spanning gene therapy, cancer treatment, diagnostics, and microsurgery, and the materials used in the fabrication of these vehicles encompassing polymers, ceramics, and lipids. Moreover, the review analyses the challenges and limitations of such drug delivery vehicles as areas of improvement to provide researchers with valuable insights for addressing current obstacles in the progression of drug delivery. Overall, this review underscores the potential of light-mediated drug delivery to revolutionise healthcare and personalised medicine, providing precise, targeted, and effective therapeutic interventions.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-13"},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insulin for oral bone tissue engineering: a review on innovations in targeted insulin-loaded nanocarrier scaffold.","authors":"Jiyaur Rahaman, Dhrubojyoti Mukherjee","doi":"10.1080/1061186X.2024.2445737","DOIUrl":"10.1080/1061186X.2024.2445737","url":null,"abstract":"<p><p>The occurrence of oral bone tissue degeneration and bone defects by osteoporosis, tooth extraction, obesity, trauma, and periodontitis are major challenges for clinicians. Traditional bone regeneration methods often come with limitations such as donor site morbidity, limitation of special shape, inflammation, and resorption of the implanted bone. The treatment oriented with biomimetic bone materials has achieved significant attention recently. In the oral bone tissue engineering arena, insulin has gained considerable attention among all the known biomaterials for osteogenesis and angiogenesis. It also exhibits osteogenic and angiogenic properties by interacting with insulin receptors on osteoblasts. Insulin influences bone remodelling both directly and indirectly. It acts directly through the PI3K/Akt and MAPK signalling pathways and indirectly by modulating the RANK/RANKL/OPG pathway, which helps reduce bone resorption. The current review reports the role of insulin in bone remodelling and bone tissue regeneration in the oral cavity in the form of scaffolds and nanomaterials. Different insulin delivery systems, utilising nanomaterials and scaffolds functionalised with polymeric biomaterials have been explored for oral bone tissue regeneration. The review put forward a theoretical basis for future research in insulin delivery in the form of scaffolds and composite materials for oral bone tissue regeneration.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-18"},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Foster, Patrick Lim, Susbin Raj Wagle, Corina Mihaela Ionescu, Bozica Kovacevic, Samuel McLenachan, Livia Carvalho, Alicia Brunet, Armin Mooranian, Hani Al-Salami
{"title":"Nanoparticle-Based gene therapy strategies in retinal delivery.","authors":"Thomas Foster, Patrick Lim, Susbin Raj Wagle, Corina Mihaela Ionescu, Bozica Kovacevic, Samuel McLenachan, Livia Carvalho, Alicia Brunet, Armin Mooranian, Hani Al-Salami","doi":"10.1080/1061186X.2024.2433563","DOIUrl":"https://doi.org/10.1080/1061186X.2024.2433563","url":null,"abstract":"<p><p>Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated. Gene delivery is an emerging field that may assist with the treatment of some of these difficult to manage forms of vision loss. Here we review how a component of nanotechnology-based, non-viral gene delivery systems are being applied to help resolve vision impairment. This review focuses on the use of lipid and polymer nanoparticles, and quantum dots as gene delivery vectors to the eye. Finally, we also highlight some emerging technologies that may be useful in this discipline.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-20"},"PeriodicalIF":4.3,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142921952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}