{"title":"A Review of Delamination Damage of Composite Materials","authors":"Tao Huang, Mykola Bobyr","doi":"10.3390/jcs7110468","DOIUrl":"https://doi.org/10.3390/jcs7110468","url":null,"abstract":"The theoretical and practical achievements in the field of the theory of strength and reliability of composite materials are discussed in a review conducted on the scientific research conducted on the effect of delamination on the reliability and quality of composites. The methodological aspects of the stability of the mechanical characteristics of composite materials under the combined action of cyclic and impact loads are examined, as are the manufacturing and processing technologies. The reasons for delamination, such as technological, manufacturing and application, free edge, joints and loads, are revealed. The influence of delamination on the bearing capacity of structural elements made of composite materials is analyzed. The mechanism of delamination growth is outlined, and the criteria and processes are defined, such as the growth of delamination cracks in a multidirectional laminated plate from a straight edge, edge delamination during plate bending, delamination in plates in the field of residual stresses, etc. The importance of taking into account the visco-plastic effect at the top of the edge crack of delamination of composite materials is emphasized. The concept of critical delamination behavior is characterized, and the issues of delamination stability are described.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":" 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dina V. Dudina, Boris B. Bokhonov, Alexander I. Gavrilov, Vladimir Yu. Ulianitsky, Arina V. Ukhina, Aigul A. Ondar, Serguei F. Tikhov, Oleg L. Smorygo
{"title":"Spark Plasma Sintering and Hot Pressing of Cu+Al Powder Mixtures and Pre-Deposited Cu/Al Layers","authors":"Dina V. Dudina, Boris B. Bokhonov, Alexander I. Gavrilov, Vladimir Yu. Ulianitsky, Arina V. Ukhina, Aigul A. Ondar, Serguei F. Tikhov, Oleg L. Smorygo","doi":"10.3390/jcs7110466","DOIUrl":"https://doi.org/10.3390/jcs7110466","url":null,"abstract":"Reactive processing of metals is interesting for materials design and achieving new sets of properties. The transformation degree of the metals, the factor governing the properties of the material as a whole, depends on the sintering/heat treatment conditions. In the present investigation, the phase and microstructure formation of materials obtained by sintering of Cu-10 wt.% Al mixtures and layered Cu/Al structures under different modes of pressing/heating is presented. The samples were obtained via spark plasma sintering (SPS), hot pressing (HP) and pressureless sintering. The products of the interaction between the metals were Al2Cu and Cu9Al4 intermetallics and Cu(Al) solid solutions. The influence of the consolidation method on the phase composition of the sintered materials was studied. The hardness of the composites was analyzed in relation to their structural features. A model experiment has been conducted to trace the structural evolution at the Cu/Al interface caused by interdiffusion. The Cu/Al layered structures obtained by detonation spraying of the powders on a steel substrate were treated by SPS or HP. The effect of electric current, which is a feature of SPS processing, was in accelerating the reaction product formation in the layered structures still containing the starting metallic reactants.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"1 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135432965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucian Zweifel, Julian Kupski, Clemens Dransfeld, Baris Caglar, Stephan Baz, Damian Cessario, Götz T. Gresser, Christian Brauner
{"title":"Multiscale Characterisation of Staple Carbon Fibre-Reinforced Polymers","authors":"Lucian Zweifel, Julian Kupski, Clemens Dransfeld, Baris Caglar, Stephan Baz, Damian Cessario, Götz T. Gresser, Christian Brauner","doi":"10.3390/jcs7110465","DOIUrl":"https://doi.org/10.3390/jcs7110465","url":null,"abstract":"The aim of this study was to characterise the microstructural organisation of staple carbon fibre-reinforced polymer composites and to investigate their mechanical properties. Conventionally, fibre-reinforced materials are manufactured using continuous fibres. However, discontinuous fibres are crucial for developing sustainable structural second-life applications. Specifically, aligning staple fibres into yarn or tape-like structures enables similar usage to continuous fibre-based products. Understanding the effects of fibre orientation, fibre length, and compaction on mechanical performance can facilitate the fibres’ use as standard engineering materials. This study employed methods ranging from microscale to macroscale, such as image analysis, X-ray computed tomography, and mechanical testing, to quantify the microstructural organisations resulting from different alignment processing methods. These results were compared with the results of mechanical tests to validate and comprehend the relationship between fibre alignment and strength. The results show a significant influence of alignment on fibre orientation distribution, fibre volume fraction, tortuosity, and mechanical properties. Furthermore, different characteristics of the staple fibre tapes were identified and attributed to kinematic effects during movement of the sliver alignment unit, resulting in varying tape thicknesses and fuzzy surfaces.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"133 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135678765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical Properties of α-Chitin and Chitosan Biocomposite: A Molecular Dynamic Study","authors":"Mohammad Salavati","doi":"10.3390/jcs7110464","DOIUrl":"https://doi.org/10.3390/jcs7110464","url":null,"abstract":"This study investigates the mechanical properties of α-chitin and chitosan biocomposites using molecular dynamics (MD) and stress–strain analyses under uniaxial tensile loading in an aqueous environment. Our models, validated against experimental data, show that α-chitin has a higher directional elastic modulus of 51.76 GPa in the x and 39.76 GPa in the y directions compared to its chitosan biocomposite, with 31.66 GPa and 26.00 GPa in the same directions, demonstrating distinct mechanical behaviors between α-chitin and the biocomposite. The greater mechanical stiffness of α-chitin can be attributed to its highly crystalline molecular structure, offering potential advantages for applications requiring load-bearing capabilities. These findings offer valuable insights for optimizing these materials for specialized applications.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Rabia, Asmaa M. Elsayed, Maha Abdallah Alnuwaiser, Madeha A. Awad
{"title":"Green Hydrogen Generation from Eco-Friendly and Cost-Effective Red Sea Water Using a Highly Photocatalytic Nanocomposite Film, As2O3/Poly-3-methylaniline","authors":"Mohamed Rabia, Asmaa M. Elsayed, Maha Abdallah Alnuwaiser, Madeha A. Awad","doi":"10.3390/jcs7110463","DOIUrl":"https://doi.org/10.3390/jcs7110463","url":null,"abstract":"The primary objective of this research is to address the energy challenges by introducing an innovative nanocomposite material. This material is designed to facilitate the conversion of environmentally friendly and economically viable Red Sea water into hydrogen gas. The ultimate goal of this work is to pave the way for the development of a practical device that can be employed within households and industrial settings to directly convert water into hydrogen gas. This novel nanocomposite material synthesized through oxidative polymerization comprises As2O3 and Poly-3-methylaniline (P3MA). This material possesses an extensive absorption range, spanning up to 700 nm, and features a bandgap of 1.75 eV, making it a promising candidate for use as a photoelectrode in green hydrogen production. The unique aspect of this setup lies in the utilization of Red Sea water, a natural sacrificing agent, as the electrolyte, rendering the process eco-friendly and cost-effective. When it is employed as a photoelectrode, this material exhibits high sensitivity to green hydrogen production, generating 6 moles/10 cm2·h of hydrogen. At a voltage of −0.83 V, the current density values are measured as −0.08 mA·cm−2 (Jph) in light and −0.02 mA·cm−2 (Jo) in darkness. Furthermore, the photoelectrode’s responsiveness to light is assessed with different optical filters, revealing the optimal performance at 340 nm, where Jph reaches −0.052 mA·cm−2. These outcomes provide strong evidence of the photoactivity of the As2O3/P3MAphotoelectrode for green hydrogen production using Red Sea water. This underscores its potential for the development of an electrochemical cell for the direct conversion of sea water into H2 gas.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135725006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strength and Stiffness Evaluation of a Fiber-Reinforced Cement-Stabilized Fly Ash Stone Dust Aggregate Mixture","authors":"Sanjeeb Kumar Mohanty, Dipti Ranjan Biswal, Benu Gopal Mohapatra, Brundaban Beriha, Ramachandra Pradhan, Harekrushna Sutar","doi":"10.3390/jcs7110459","DOIUrl":"https://doi.org/10.3390/jcs7110459","url":null,"abstract":"The utilization of waste fly ash in road construction is primarily confined to its use in embankment filling or as a stabilizer when combined with lime and cement. Its application in structural pavement layers, such as the base and subbase, faces a challenge due to the high volume of fine particles, which renders it brittle when stabilized. In this study, fly ash was blended with stone dust and aggregated to enhance its gradation. Subsequently, it was stabilized with cement to bolster its strength, rendering it suitable for pavement use. Additionally, polypropylene (PP) fibers were introduced to mitigate the brittleness of the mixture. An extensive experimental investigation was conducted to assess the strength and stiffness properties, including compressive strength, indirect tensile strength, flexural strength, cyclic indirect tensile modulus, and flexural modulus of fiber-reinforced cement-stabilized mixtures of fly ash, stone dust, and aggregate. The experimental results reveal that the addition of PP fibers up to 0.25 wt.% enhances compressive strength, but any further increase in fiber content leads to a reduction in strength. However, indirect tensile strength and flexural strength show improvement, with an increase in fiber percentage up to 0.5 wt.%. It was observed that cement content plays a dominant role in stabilizing these materials. Appropriate relationships have been established between strength and modulus parameters for stabilized mixtures. Based on the strength and stiffness study, a combination of 70% fly ash and 30% stone dust aggregate with 6% cement can be considered for the base layer. Regarding the behavior of indirect tensile strength and flexural strength, an optimum fiber percentage of 0.35% is recommended.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135821655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Response Optimization of Abrasive Waterjet Cutting on r-GO-Reinforced Fibre Intermetallic Laminates through Moth–Flame Optimization Algorithm","authors":"Devaraj Rajamani, Mahalingam Siva Kumar, Esakki Balasubramanian","doi":"10.3390/jcs7110462","DOIUrl":"https://doi.org/10.3390/jcs7110462","url":null,"abstract":"Laminated metal-composite structures, also known as fibre metal laminates (FMLs), have emerged as prominent engineering materials in various industries, particularly in the domains of aircraft and automobile manufacturing. These materials are sought after due to their enhanced impact and fatigue resistance capabilities. The machining of FMLs plays a crucial role in achieving near-net shapes for the purpose of joining and assembling components. Delamination is a prevalent issue encountered during the process of conventional machining, thus rendering FMLs are challenging materials to machine. This study aims to investigate the cutting process of novel fibre intermetallic laminates (FILs) using the abrasive water jet (AWJ) cutting technique. The FILs consists of carbon and aramid fibers that are adhesively bonded with a resin matrix filled with reduced graphene oxide (r-GO) nano fillers. Moreover, these laminates contain embedded Nitinol shape memory alloy sheets as the skin materials. Specifically, the study aims to investigate the impact of different factors, such as the addition of reduced graphene oxide (r-GO) in the laminates (ranging from 0 to 2 wt%), traverse speed (ranging from 400 to 600 mm/min), waterjet pressure (ranging from 200 to 300 MPa), and nozzle height (ranging from 2 to 4 mm), on the material removal rate (MRR), delamination factor (FD), and kerf deviation (KD). ANOVA was used in the statistical analysis to determine the most influential parameters and their effects on the selected responses. The optimal AWJC parameters are determined using a metaheuristic-based moth–flame optimization (MFO) algorithm in order to enhance cut quality. The efficacy of MFO is subsequently compared with similar well-established metaheuristics such as the genetic algorithm, particle swarm algorithm, dragonfly algorithm, and grey-wolf algorithm. MFO was found to outperform in terms of several performance indices, including rapid divergence, diversity, spacing, and hypervolume values, among the algorithms compared.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"23 S4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valeria A. Balybina, Artur N. Dran’kov, Oleg O. Shichalin, Natalia Yu. Savel’eva, Nadezhda G. Kokorina, Zhanna C. Kuular, Nikita P. Ivanov, Svetlana G. Krasitskaya, Andrei I. Ivanets, Evgeniy K. Papynov
{"title":"Mesoporous Layered Double Hydroxides: Synthesis for High Effective Uranium Ions Sorption from Seawater and Salt Solutions on Nanocomposite Functional Materials","authors":"Valeria A. Balybina, Artur N. Dran’kov, Oleg O. Shichalin, Natalia Yu. Savel’eva, Nadezhda G. Kokorina, Zhanna C. Kuular, Nikita P. Ivanov, Svetlana G. Krasitskaya, Andrei I. Ivanets, Evgeniy K. Papynov","doi":"10.3390/jcs7110458","DOIUrl":"https://doi.org/10.3390/jcs7110458","url":null,"abstract":"A series of sorption materials based on layered double hydroxides (Co-Fe LDH, Ni-Fe LDH, and Zn-Ti LDH) were obtained by a facile and environmentally friendly method of coprecipitation. A low particle size of no more than 10 µm was achieved. The use of transition metals makes it possible to obtain compounds that are mechanically and chemically stable in aggressive environments. XRD analysis revealed that the compounds have a highly organized crystalline structure. Using SEM, it was determined that Co-Fe LDH and Ni-Fe LDH had a loose, highly dispersed surface structure, while Zn-Ti LDH had a monolithic surface structure. U(VI) adsorption on the obtained materials in solutions containing Na2CO3, Na2SO4, KNO3, NaCl, K3PO4, and NaHCO3, was studied in batch mode. The degree of purification in the presence of these salts reached 99.9%, while the distribution coefficient Kd reached 105 mL/g. Sorption capacity qmax and equilibrium adsorption constants Kf and KL for U(VI) adsorption in batch mode (for 24 h) from distilled and seawater were determined using the Freundlich and Langmuir equations. The highest sorption capacity of 101.6 mg/g in seawater and 114.1 mg/g in distilled water was registered for Co-Fe-LDH. The presence of competing ions in seawater can reduce sorption efficiency by up to 40%. The provided research allowed us to conclude that the obtained materials, Co-Fe LDH, Ni-Fe LDH, and Zn-Ti LDH are promising for the sorption removal of U(VI) from aqueous media of medium salinity.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"14 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135821654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aliya Zh. Omarova, Talgatbek Ayazbaev, Zhanar S. Yesdauletova, Sholpan A. Aldabergen, Artem L. Kozlovskiy, Gulnaz Zh. Moldabayeva
{"title":"Evaluation of the Applicability of Modifying CdSe Thin Films by the Addition of Cobalt and Nickel to Enhance the Efficiency of Photocatalytic Decomposition of Organic Dyes","authors":"Aliya Zh. Omarova, Talgatbek Ayazbaev, Zhanar S. Yesdauletova, Sholpan A. Aldabergen, Artem L. Kozlovskiy, Gulnaz Zh. Moldabayeva","doi":"10.3390/jcs7110460","DOIUrl":"https://doi.org/10.3390/jcs7110460","url":null,"abstract":"This article presents the results of an assessment of the use of CdSe, NiCdSe, and CoCdSe thin films as a basis for photocatalysts used for the decomposition of the organic dyes rhodamine B, cargo red, and indigo carmine. Interest in this area was determined by the need to solve a number of issues related to increasing the efficiency purifying aqueous media from the negative effects of organic dyes, which cannot be disposed of using traditional methods associated with adsorption or filtration. The use of the electrochemical synthesis method to obtain thin films of a given thickness showed that the addition of nickel or cobalt sulfates to the standard electrolyte solution used to obtain CdSe films results in the formation of CdSe films with a higher degree of structural ordering (the crystallinity degree was more than 50%), as well as a decline in the band gap. When analyzing data on the photocatalytic decomposition of organic dyes, it was found that a change in the structure of the films due to the introduction of nickel and cobalt leads, in the case of the decomposition of the rhodamine B dye, to a more efficient decomposition, and in the case of the cargo red and indigo carmine dyes, not only to their complete decomposition and mineralization, but also to a reduction in the time of photocatalytic reactions (decomposition growth rate). Moreover, an analysis of cyclic tests demonstrated that NiCdSe and CoCdSe films maintain 90% of their photocatalytic decomposition efficiency compared to that achieved during the first decomposition cycle, while CdSe degrades after three consecutive cycles and its efficiency reduces by more than 2.5–3 times.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"13 S4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135872950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaowen Han, Xinru Zuo, Ying Liu, Zixing Wang, Kefeng Cai
{"title":"Preparation and Properties of Flexible CuI/Polyvinylpyrrolidone Nanocomposite Thermoelectric Film","authors":"Xiaowen Han, Xinru Zuo, Ying Liu, Zixing Wang, Kefeng Cai","doi":"10.3390/jcs7110461","DOIUrl":"https://doi.org/10.3390/jcs7110461","url":null,"abstract":"A facile preparation method for flexible p-type CuI/polyvinylpyrrolidone (PVP) nanocomposite thermoelectric (TE) film is developed. First, CuI powder was synthesized by a one-pot method; second, PVP was coated in situ with the CuI powder; third, the CuI/PVP nanocomposite film was prepared on a nylon membrane by vacuum filtration and then hot-pressing. Transmission electron microscopy (TEM) observation indicates that the film consists of CuI nanograins with an average size of ~15 nm and PVP distributed at the inner wall of nanopores and the surface of the CuI nanograins. The composite film shows a large Seebeck coefficient of ~605 µVK−1 and a power factor of ~8.05 µWm−1K−2 at 300 K. The nanocomposite film also exhibits excellent flexibility (~96% of initial electrical conductivity retention after being bent 1000 times along a 4 mm radius rod). A single-leg TE module outputs a voltage of ~3.6 mV when the temperature difference is 6 K. This work provides a fast, simple, and environmentally friendly method by which to prepare flexible CuI/PVP nanocomposite TE film with a large Seebeck coefficient, which could be used as a wearable sensor.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"8 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135818946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}