Xiaowen Han, Xinru Zuo, Ying Liu, Zixing Wang, Kefeng Cai
{"title":"Preparation and Properties of Flexible CuI/Polyvinylpyrrolidone Nanocomposite Thermoelectric Film","authors":"Xiaowen Han, Xinru Zuo, Ying Liu, Zixing Wang, Kefeng Cai","doi":"10.3390/jcs7110461","DOIUrl":null,"url":null,"abstract":"A facile preparation method for flexible p-type CuI/polyvinylpyrrolidone (PVP) nanocomposite thermoelectric (TE) film is developed. First, CuI powder was synthesized by a one-pot method; second, PVP was coated in situ with the CuI powder; third, the CuI/PVP nanocomposite film was prepared on a nylon membrane by vacuum filtration and then hot-pressing. Transmission electron microscopy (TEM) observation indicates that the film consists of CuI nanograins with an average size of ~15 nm and PVP distributed at the inner wall of nanopores and the surface of the CuI nanograins. The composite film shows a large Seebeck coefficient of ~605 µVK−1 and a power factor of ~8.05 µWm−1K−2 at 300 K. The nanocomposite film also exhibits excellent flexibility (~96% of initial electrical conductivity retention after being bent 1000 times along a 4 mm radius rod). A single-leg TE module outputs a voltage of ~3.6 mV when the temperature difference is 6 K. This work provides a fast, simple, and environmentally friendly method by which to prepare flexible CuI/PVP nanocomposite TE film with a large Seebeck coefficient, which could be used as a wearable sensor.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"8 2","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs7110461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
A facile preparation method for flexible p-type CuI/polyvinylpyrrolidone (PVP) nanocomposite thermoelectric (TE) film is developed. First, CuI powder was synthesized by a one-pot method; second, PVP was coated in situ with the CuI powder; third, the CuI/PVP nanocomposite film was prepared on a nylon membrane by vacuum filtration and then hot-pressing. Transmission electron microscopy (TEM) observation indicates that the film consists of CuI nanograins with an average size of ~15 nm and PVP distributed at the inner wall of nanopores and the surface of the CuI nanograins. The composite film shows a large Seebeck coefficient of ~605 µVK−1 and a power factor of ~8.05 µWm−1K−2 at 300 K. The nanocomposite film also exhibits excellent flexibility (~96% of initial electrical conductivity retention after being bent 1000 times along a 4 mm radius rod). A single-leg TE module outputs a voltage of ~3.6 mV when the temperature difference is 6 K. This work provides a fast, simple, and environmentally friendly method by which to prepare flexible CuI/PVP nanocomposite TE film with a large Seebeck coefficient, which could be used as a wearable sensor.