Alisher E. Kurakhmedov, A. Morzabayev, V. Uglov, A. Kozlovskiy
{"title":"Study of the Effect of Variation in the Phase Composition of ZrO2/MgO Ceramics on the Resistance to Radiation Damage during Irradiation with Kr15+ Ions","authors":"Alisher E. Kurakhmedov, A. Morzabayev, V. Uglov, A. Kozlovskiy","doi":"10.3390/jcs7120497","DOIUrl":"https://doi.org/10.3390/jcs7120497","url":null,"abstract":"Interest in the modification of zirconium-containing ceramics is rooted in their great prospects for application as materials for creating inert matrices of dispersed nuclear fuel, which can replace traditional fuel containing uranium dioxide, as well as increase the degree of its burnup. Moreover, among the variety of different types of ceramics offered, zirconium dioxide is the most promising, since it has higher thermal conductivity values compared to other types of ceramics, as well as low volumetric thermal expansion. Moreover, the key limitations in the application of these types of ceramics as materials for creating inert matrices are polymorphic transformations, which have a negative impact on changes in the properties of ceramics under external influences. The evaluation results of the impact of change in the ZrO2 ceramics’ phase composition on the radiation damage resistance when subjected to irradiation with heavy ions, comparable in energy to fission fragments, are presented. The objects of study were samples of ZrO2 ceramics doped with MgO, the variation in the concentration of which leads to an acceleration of the processes of polymorphic transformations during thermal sintering, as well as the formation of a ZrO2/MgO-type structure with inclusions in the form of MgO grains. The results of the irradiation effect on the stability of the crystal structure of ceramics to deformation swelling due to the accumulation of deformation inclusions showed that ceramics with a monoclinic structure type are the least stable, for which, in the case of high irradiation fluences, the accumulation of deformation distortions leads to polymorphic transformations of the m—ZrO2 → t—ZrO2 type. During the evaluation of the irradiation effect on the change in mechanical properties and the softening degree, it was found that phase transformations of the m—ZrO2 → t—ZrO2 and t—ZrO2 → c—ZrO2 types lead to an increase in crack resistance by 1.5–2.0 times. Meanwhile, the formation of a structure of the ZrO2/MgO type with inclusions in the form of MgO grains in the interboundary space results in a softening resistance growth by over 7-fold. During tests for determining thermophysical parameters, as well as maintaining stability to crystal structure thermal expansion during prolonged thermal exposure, it was found that phase transformations associated with polymorphic transformations of the t—ZrO2 → c—ZrO2 type led to the preservation of the stability of thermophysical properties, even in the case of high irradiation fluences.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":" 106","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138613545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Quadrini, L. Iorio, L. Santo, Christian Circi, Enrico Cavallini, R. Pellegrini
{"title":"Smart Composite Booms for Solar Sails","authors":"F. Quadrini, L. Iorio, L. Santo, Christian Circi, Enrico Cavallini, R. Pellegrini","doi":"10.3390/jcs7120495","DOIUrl":"https://doi.org/10.3390/jcs7120495","url":null,"abstract":"Composite booms for solar sails have been prototyped by using innovative smart materials. Shape memory polymer composites (SMPCs) have been manufactured by interposing SMP layers between carbon-fiber-reinforced (CFR) plies. A polyimide membrane has been embedded into the CFR-SMPC frame of the sail during lamination. The sail’s size has been limited to 250 × 250 mm2 to allow its testing on Earth. The feasibility of large sail deployments has been shown by prototyping small CFR-SMPC elements to insert only in the folding zones. Numerical simulation by finite element modeling allowed for predicting the presence of wrinkles close to the frame’s vertexes in the cases of large sails under solar radiation pressures. Nevertheless, the frame’s configuration, with SMPC booms at all the edges of the sail membrane, seems to be suitable for drag sails instead of propulsion. On-Earth recovery tests have been performed on 180° folded sails by using flexible heaters. After an initial induction time, the maximum rate was reached with a following drop. In the case of two heaters per folding zone, the angular recovery rate reached the maximum value of about 30 deg/s at the power of 34 W, and full recovery was made in 20 s.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"87 22","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139197162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergey I. Petrushenko, M. Fijałkowski, Volodymyr R. Kopach, Y. M. Shepotko, K. Adach, S. Dukarov, V. Sukhov, Alina Fedonenko, A. Khrypunova, Natalia P. Klochko
{"title":"Triboelectric Nanogenerators Based on Nanostructured Layers of Zinc Oxide Deposited on Carbon Fabric","authors":"Sergey I. Petrushenko, M. Fijałkowski, Volodymyr R. Kopach, Y. M. Shepotko, K. Adach, S. Dukarov, V. Sukhov, Alina Fedonenko, A. Khrypunova, Natalia P. Klochko","doi":"10.3390/jcs7120496","DOIUrl":"https://doi.org/10.3390/jcs7120496","url":null,"abstract":"In this work, to obtain textile triboelectric layers for wearable flexible triboelectric nanogenerators (TENGs), we used two modes of growing nanostructured zinc oxide (ZnO) arrays on a carbon fabric (CF) using the automatic Successive Ionic Layer Adsorption and Reaction (SILAR) method. To produce a CF/ZnO_nr triboelectric textile with an array of intergrown short ZnO nanorods, we used a pre-coating of carbon fibers with ZnO seed layers. When the ZnO layer was fabricated by automatic SILAR on bare carbon fabric, we obtained the CF/ZnO_ns textile with an array of interconnected ZnO nanosheets 50–100 nm thick. As a proof of concept, we developed and tested two prototypes of flexible vertical contact–separation mode CF/ZnO_nr/PET/ITO and CF/ZnO_ns/PET/ITO TENGs, in which a gap was involuntarily formed between the smooth PET layer and the woven carbon textile coated with nanostructured ZnO films. In pressing tests with a force of ~5 N (pressure ~33 kPa), the CF/ZnO_ns/PET/ITO TENG created a higher open-circuit voltage up to 30 V and a higher maximum surface charge density of 1.3 μC/m2. In the successive press–release tests, this TENG showed an output voltage of 3.6 V, a current density of 1.47 μA/cm2, and a power density of 1.8 µW/cm2, confirming its effectiveness.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"65 6","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139205479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on the Conventional Uniaxial Mechanical Properties and Micro-Mechanism of Sandstone under Dry–Wet Cycles","authors":"Jinsong Zhang, Shilong Peng, Yudi Yang","doi":"10.3390/jcs7120494","DOIUrl":"https://doi.org/10.3390/jcs7120494","url":null,"abstract":"Dry–wet cycling has a significant impact on the mechanical properties of rocks, and a series of problems such as rock collapse can occur in rock masses under long-term dry–wet cycling. Based on this, some mechanical tests were carried out on sandstone under different dry–wet cycles to analyze the evolution law of its physical and mechanical parameters. The results show that the internal connection of the mineral becomes looser, the drying quality of the sample decreases, and the water absorption quality increases gradually under different dry–wet cycles. The peak strength of the sample decreases first and then increases with increasing dry–wet cycles. The change trend of the elastic modulus and deformation modulus with the increase in dry–wet cycles are similar to the peak strength, which is mainly related to the change in the connection between particles. Furthermore, the specimens showed axial tensile failure under uniaxial action. With the increase in dry–wet cycles, the tensile crack on the surface of the specimen increased, and the fracture of the specimen became looser. The specimen exhibited block spalling when the number of dry–wet cycles was eight times.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"235 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139213155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Nayak, Anupama Hiremath, G. Bolar, Atharva Sachin Punekar, Shivam Prakash, Hrithik Shetty, J. P. Jaideep
{"title":"Exploring the Effect of Natural Ficus benghalensis Tree Aerial Root Powder on the Mechanical Properties of Basalt-Fiber-Reinforced Polymer Composites","authors":"S. Nayak, Anupama Hiremath, G. Bolar, Atharva Sachin Punekar, Shivam Prakash, Hrithik Shetty, J. P. Jaideep","doi":"10.3390/jcs7120493","DOIUrl":"https://doi.org/10.3390/jcs7120493","url":null,"abstract":"Banyan aerial root (BAR) powder was prepared from the aerial roots of a Banyan tree to modify epoxy resin using a magnetic stirrer. The modification was performed at different proportions of BAR powder, namely, 2%, 4%, 6%, and 8%, by weight. Composites were fabricated with modified and unmodified resins using a combination of hand lay-up and compression molding processes to evaluate the influence of BAR powders on their mechanical properties. The test results showed that BAR powder incorporation had a positive influence on the mechanical properties of the composites, as an increase in tensile, flexural, and impact strengths was observed, with the highest tensile and flexural properties of 407.81 MPa and 339 MPa, respectively, seen in composites with 4% BAR and the highest impact strength 194.02 kJ/m2 observed in the specimen with 6% BAR powder. Though the properties saw a dipping trend at higher weight proportions of the particulate, they were still significantly higher than the properties of laminates prepared with unmodified resin. Gravimetric analysis and Fourier transform infrared spectroscopy (FTIR) on BAR powders confirmed cellulose to be the major constituent, followed by lignin and hemicellulose. A scanning electron microscope was used for studying the failure mechanisms of the laminates.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"19 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139214028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial for the Special Issue on Sustainable Composite Construction Materials","authors":"Krishanu Roy, Beulah Gnana Ananthi Gurupatham","doi":"10.3390/jcs7120491","DOIUrl":"https://doi.org/10.3390/jcs7120491","url":null,"abstract":"Sustainable composite construction materials play a crucial role in creating more environmental friendly and energy-efficient buildings [...]","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"23 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139226896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morgan Lecoublet, M. Ragoubi, Leonel Billy Kenfack, Nathalie Leblanc, Ahmed Koubaa
{"title":"How Do 3D Printing Parameters Affect the Dielectric and Mechanical Performance of Polylactic Acid–Cellulose Acetate Polymer Blends?","authors":"Morgan Lecoublet, M. Ragoubi, Leonel Billy Kenfack, Nathalie Leblanc, Ahmed Koubaa","doi":"10.3390/jcs7120492","DOIUrl":"https://doi.org/10.3390/jcs7120492","url":null,"abstract":"Three-dimensional printing is a prototyping technique that is widely used in various fields, such as the electrical sector, to produce specific dielectric objects. Our study explores the mechanical and dielectric behavior of polylactic acid (PLA) and plasticized cellulose acetate (CA) blends manufactured via Fused Filament Fabrication (FFF). A preliminary optimization of 3D printing parameters showed that a print speed of 30 mm·s−1 and a print temperature of 215 °C provided the best compromise between print quality and processing time. The dielectric properties were very sensitive to the three main parameters (CA content WCA, infill ratio, and layer thickness). A Taguchi L9 3^3 experimental design revealed that the infill ratio and WCA were the main parameters influencing dielectric properties. Increasing the infill ratio and WCA increased the dielectric constant ε′ and electrical conductivity σAC. It would, therefore, be possible to promote the integration of CA in the dielectric domain through 3D printing while counterbalancing its greater polarity by reducing the infill ratio. The dielectric findings are promising for an electrical insulation application. Furthermore, the mechanical findings obtained through dynamic mechanical analysis are discussed.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"46 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139215889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanics and Crack Analysis of Irida Graphene Bilayer Composite: A Molecular Dynamics Study","authors":"Jianyu Li, Mingjun Han, Shuai Zhao, Teng Li, Taotao Yu, Yinghe Zhang, Ho-Kin Tang, Qing Peng","doi":"10.3390/jcs7120490","DOIUrl":"https://doi.org/10.3390/jcs7120490","url":null,"abstract":"In this paper, we conducted molecular dynamics simulations to investigate the mechanical properties of double-layer and monolayer irida graphene (IG) structures and the influence of cracks on them. IG, a new two-dimensional material comprising fused rings of 3-6-8 carbon atoms, exhibits exceptional electrical and thermal conductivity, alongside robust structural stability. We found the fracture stress of the irida graphene structure on graphene sheet exceeds that of the structure comprising solely irida graphene. Additionally, the fracture stress of bilayer graphene significantly surpasses that of bilayer irida graphene. We performed crack analysis in both IG and graphene and observed that perpendicular cracks aligned with the tensile direction result in decreased fracture stress as the crack length increases. Moreover, we found that larger angles in relation to the tensile direction lead to reduced fracture stress. Across all structures, 75° demonstrated the lowest stress and strain. These results offer valuable implications for utilizing bilayer and monolayer IG in the development of advanced nanoscale electronic devices.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"61 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139230579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Billings, Ridwan Siddique, Benjamin Sherwood, Joshua Hall, Yingtao Liu
{"title":"Additive Manufacturing and Characterization of Sustainable Wood Fiber-Reinforced Green Composites","authors":"C. Billings, Ridwan Siddique, Benjamin Sherwood, Joshua Hall, Yingtao Liu","doi":"10.3390/jcs7120489","DOIUrl":"https://doi.org/10.3390/jcs7120489","url":null,"abstract":"Enhancing mechanical properties of environmentally friendly and renewable polymers by the introduction of natural fibers not only paves the way for developing sustainable composites but also enables new opportunities in advanced additive manufacturing (AM). In this paper, wood fibers, as a versatile renewable resource of cellulose, are integrated within bio-based polylactic acid (PLA) polymer for the development and 3D printing of sustainable and recycle green composites using fused deposition modeling (FDM) technology. The 3D-printed composites are comprehensively characterized to understand critical materials properties, including density, porosity, microstructures, tensile modulus, and ultimate strength. Non-contact digital image correlation (DIC) technology is employed to understand local stress and strain concentration during mechanical testing. The validated FDB-based AM process is employed to print honeycombs, woven bowls, and frame bins to demonstrate the manufacturing capability. The performance of 3D-printed honeycombs is tested under compressive loads with DIC to fully evaluate the mechanical performance and failure mechanism of ultra-light honeycomb structures. The research outcomes can be used to guide the design and optimization of AM-processed composite structures in a broad range of engineering applications.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"7 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139236461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. A. Mohidem, M. Mohamad, Muhammad Usman Rashid, M. N. Norizan, Fazlena Hamzah, H. Mat
{"title":"Recent Advances in Enzyme Immobilisation Strategies: An Overview of Techniques and Composite Carriers","authors":"N. A. Mohidem, M. Mohamad, Muhammad Usman Rashid, M. N. Norizan, Fazlena Hamzah, H. Mat","doi":"10.3390/jcs7120488","DOIUrl":"https://doi.org/10.3390/jcs7120488","url":null,"abstract":"For over a century, enzyme immobilisation has been proven to be a superior strategy to improve catalytic activity and reusability and ensure easy separation, easy operation, and reduced cost. Enzyme immobilisation allows for an easier separation of the enzyme from the reaction mixture, thus simplifying downstream processing. This technology protects the enzyme from degradation or inactivation by harsh reaction conditions, making it more robust and suitable to be used in various applications. Recent strategies of immobilisation methods, such as adsorption, cross-linking, entrapment or encapsulation, and covalent bonding, were critically reviewed. These strategies have shown promising results in improving enzyme stability, activity, and reusability in various applications. A recent development in enzyme immobilisation in nanomaterials and agrowaste renewable carriers is underlined in the current review. Furthermore, the use of nanomaterials and agrowaste carriers in enzyme immobilisation has gained significant attention due to their unique properties, such as high surface area, high mass transfer, biocompatibility, and sustainability. These materials offer promising outcomes for developing more efficient and sustainable immobilised enzymes. This state-of-the-art strategy allows for better control over enzyme reactions and enhances their reusability, leading to more cost-effective and environmentally friendly processes. The use of renewable materials also helps to reduce waste generation and promote the utilisation of renewable resources, further contributing to the development of a circular economy.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139235995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}