Joonbeom Kim, Su Min Son, Eunbyeol Ahn, Haejoon Park, Sangryeol Ryu
{"title":"Surface charge of the C-terminal helix is crucial for antibacterial activity of endolysin against Gram-negative bacteria.","authors":"Joonbeom Kim, Su Min Son, Eunbyeol Ahn, Haejoon Park, Sangryeol Ryu","doi":"10.1186/s12929-025-01133-x","DOIUrl":"10.1186/s12929-025-01133-x","url":null,"abstract":"<p><strong>Backgrounds: </strong>Endolysins are promising alternatives to antibiotics because they can lyse bacterial cells rapidly with a low risk of resistance development, however, their effectiveness against Gram-negative bacteria is hindered by the presence of the outer membrane present in Gram-negative bacteria. Several endolysins with amphipathic helices at the C-terminus have been reported to have intrinsic antibacterial activity against Gram-negative bacteria but their action mechanism is not fully elucidated.</p><p><strong>Methods: </strong>The sequence alignment analysis was assessed with the CLC Main workbench 7, and His-tagged endolysins were purified with affinity chromatography. Site-directed mutagenesis was used to generate mutations in the endolysin to make various endolysin mutants. The muralytic activity of the endolysin against Gram-negative bacteria was analyzed using a turbidity reduction assay and the antibacterial activities of the endolysins were assessed through a viable cell counting assay.</p><p><strong>Results: </strong>We identified two endolysins, LysTS3 and LysTS6, both of which have similar sequences and structures including the amphipathic helices at their C-terminus. LysTS6 exhibited significantly higher antibacterial activity against Gram-negative bacteria compared to LysTS3 even though both enzymes have similar muralytic activity against the outer membrane-permeabilized Gram-negative bacteria. Systematic truncation and bioinformatic analysis of these two endolysins revealed a major difference in the charge on the surface of their C-terminal helices, suggesting the possibility that the charge on this helix can determine the antibacterial activity of the endolysins against Gram-negative bacteria. We could enhance the activity of LysTS3 against Gram-negative bacteria by replacing Ala<sub>156</sub> and Glu<sub>160</sub> with lysine and alanine, respectively, the amino acid residues at the structurally equivalent positions in LysTS6. A similar activity boost was also seen in LysSPN1S and LysJEP4 when the surface charge of the C-terminal amphipathic helix was altered to be more positive through the modification of the surface-exposed amino acid residues.</p><p><strong>Conclusions: </strong>The antibacterial activity of endolysin against Gram-negative bacteria could be enhanced by adjusting the surface charge on the C-terminal amphipathic helix to more positive, suggesting that the positive surface charge on the C-terminal amphipathic helix of endolysin is crucial for its penetration of outer membrane to reach peptidoglycan layer of Gram-negative bacteria.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"38"},"PeriodicalIF":9.0,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143692311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metformin sensitizes triple-negative breast cancer to histone deacetylase inhibitors by targeting FGFR4.","authors":"Zhangyuan Gu, Fugui Ye, Hong Luo, Xiaoguang Li, Yue Gong, Shiqi Mao, Xiaoqing Jia, Xiangchen Han, Boyue Han, Yun Fu, Xiaolin Cheng, Jiejing Li, Zhiming Shao, Peizhen Wen, Xin Hu, Zhigang Zhuang","doi":"10.1186/s12929-025-01129-7","DOIUrl":"10.1186/s12929-025-01129-7","url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is characterized by high malignancy, strong invasiveness, and a propensity for distant metastasis, leading to poor prognosis and relatively limited treatment options. Metformin, as a first-line oral hypoglycemic agent, has garnered widespread research interest in recent years due to its potential in cancer prevention and treatment. However, its efficacy varies significantly across different tumor types. Histone deacetylase inhibitors (HDACi), such as SAHA, have demonstrated antitumor activity, but TNBC responds poorly to HDACi monotherapy, possibly due to feedback activation of the JAK-STAT pathway. Exploring the synergistic potential and underlying mechanisms of combining metformin with HDACi in TNBC treatment is crucial.</p><p><strong>Methods: </strong>We predicted the synergistic effects of metformin and SAHA in TNBC using multiple computational methods (CMap, DTsyn, and DrugComb). We also developed a cancer-specific compound mimic library (CDTSL) and applied a three-step strategy to identify genes fitting the \"metformin sensitization\" model. Subsequently, we evaluated the synergistic effects of metformin and SAHA in TNBC cell lines through cell proliferation, colony formation, and apoptosis assays. Furthermore, we investigated the molecular mechanisms of the combined treatment using techniques such as transcriptome sequencing, chromatin immunoprecipitation (ChIP), Western blotting, and measurement of extracellular acidification rate (ECAR). Additionally, we assessed the in vivo antitumor effects of the combined therapy in a nude mouse subcutaneous xenograft model.</p><p><strong>Results: </strong>CMap, DTsyn, and DrugComb all predicted the synergistic effects of SAHA and metformin in TNBC. The screening results revealed that HDAC10 played a key role in metformin sensitization. We found that the combination of metformin and SAHA exhibited synergistic antitumor effects (combination index CI < 0.9) in TNBC cell lines. Mechanistically, metformin inhibited histone acetylation on FGFR4, thereby blocking the feedback activation of FGFR4 downstream pathways induced by SAHA. Furthermore, metformin interfered with the glycolysis process induced by SAHA, altering the metabolic reprogramming of tumor cells. In in vivo experiments, the combined treatment of metformin and SAHA significantly inhibited the growth of subcutaneous tumors in nude mice.</p><p><strong>Conclusions: </strong>Metformin enhances the sensitivity of TNBC to HDAC inhibitors by blocking the FGFR4 pathway and interfering with metabolic reprogramming. When used in combination with SAHA, metformin exhibits synergistic antitumor effects. Our study provides a theoretical basis for the combined application of HDAC inhibitors and metformin, potentially offering a new strategy for the treatment of TNBC.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"36"},"PeriodicalIF":9.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143648718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxytocin signaling in the ventral tegmental area mediates social isolation-induced craving for social interaction.","authors":"Hsin-Tzu Chang, Kuan-Hsiang Cheng, Yu-Chieh Hung, Kuei-Sen Hsu","doi":"10.1186/s12929-025-01130-0","DOIUrl":"10.1186/s12929-025-01130-0","url":null,"abstract":"<p><strong>Background: </strong>Social interaction is crucial for mental health across animal species. Social experiences, especially in early-life stages, strongly influence brain function and social behavior later in life. Acute social isolation (SI) increases motivation to seek social interaction, but little is known about its underlying neuronal and circuitry mechanisms. Here, we focus on oxytocin signaling in the ventral tegmental area (VTA), a vital node of the brain's reward network, as a potential mechanism for SI-induced craving for social interaction.</p><p><strong>Methods: </strong>Adolescent (4-week-old) or adult (14-week-old) male C57BL/6J mice underwent a 1-week SI. Free interaction, object exploration, three-chamber social approach, and habituation tests were used to assess social and non-social behavior changes. Viral vectors were used to decipher the underlying neural circuitry, and chemogenetic techniques were applied to modify neuronal activity.</p><p><strong>Results: </strong>We found that in male C57BL/6J mice, SI during adolescence, but not adulthood, leads to increased craving for social interaction and object exploration, accompanied by impaired social habituation, social novelty preference, and social recognition memory (SRM). SI-induced craving for social interaction and SRM deficit is still observed upon regrouping. Through cell-type-specific manipulations with designer receptors exclusively activated by designer drugs (DREADD), we show that oxytocin neurons in the paraventricular nucleus of the hypothalamus (PVN) are crucial for SI-induced social behavior changes. Chemogenetic activation of PVN oxytocin neurons recapitulates social behavior changes observed in SI mice, whereas chemogenetic inhibition of oxytocin neurons prevents social behavior changes caused by SI. Moreover, we found that dopaminergic neurons in the VTA mediate SI-induced craving for social interaction through their projections to the medial prefrontal cortex (mPFC), but not to the nucleus accumbens. Injection of a specific oxytocin receptor antagonist L368,899 into the VTA or chemical lesions of dopaminergic axon terminals in the mPFC with local application of 6-hydroxydopamine ameliorates SI-induced social behavior changes.</p><p><strong>Conclusions: </strong>These findings suggest that adolescent SI has enduring effects on social behaviors in male mice through an oxytocinergic modulation of the VTA-to-mPFC dopaminergic circuit activity.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"37"},"PeriodicalIF":9.0,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143648639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"REM sleep quality is associated with balanced tonic activity of the locus coeruleus during wakefulness.","authors":"Nasrin Mortazavi, Puneet Talwar, Ekaterina Koshmanova, Roya Sharifpour, Elise Beckers, Alexandre Berger, Islay Campbell, Ilenia Paparella, Fermin Balda, Ismael Dardour Hamzaoui, Christian Berthomier, Christine Bastin, Christophe Phillips, Pierre Maquet, Fabienne Collette, Mikhail Zubkov, Laurent Lamalle, Gilles Vandewalle","doi":"10.1186/s12929-025-01127-9","DOIUrl":"10.1186/s12929-025-01127-9","url":null,"abstract":"<p><strong>Background: </strong>Animal studies established that the locus coeruleus (LC) plays important roles in sleep and wakefulness regulation. Whether it contributes to sleep variability in humans is not yet established. Here, we investigated if the in vivo activity of the LC is related to the variability in the quality of Rapid Eye Movement (REM) sleep.</p><p><strong>Methods: </strong>We assessed the LC activity of 34 healthy younger (~ 22y) and 18 older (~ 61y) individuals engaged in bottom-up and top-down cognitive tasks using 7-Tesla functional Magnetic Resonance Imaging (fMRI). We further recorded their sleep electroencephalogram (EEG) to evaluate associations between LC fMRI measures and REM sleep EEG metrics.</p><p><strong>Results: </strong>Theta oscillation energy during REM sleep was positively associated with LC response in the top-down task. In contrast, REM sleep theta energy was negatively associated with LC activity in older individuals during the bottom-up task. Importantly, sigma oscillations power immediately preceding a REM sleep episode was positively associated with LC activity in the top-down task.</p><p><strong>Conclusions: </strong>LC activity during wakefulness was related to REM sleep intensity and to a transient EEG change preceding REM sleep, a feature causally related to LC activity in animal studies. The associations depend on the cognitive task, suggesting that a balanced level of LC tonic activity during wakefulness is required for optimal expression of REM sleep. The findings may have implications for the high prevalence of sleep complaints reported in aging and for disorders such as insomnia, Alzheimer's, and Parkinson's disease, for which the LC may play pivotal roles through sleep.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"35"},"PeriodicalIF":9.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11900061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143605112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IL-19 as a promising theranostic target to reprogram the glioblastoma immunosuppressive microenvironment.","authors":"Gilbert Aaron Lee, Justin Bo-Kai Hsu, Yu-Wei Chang, Li-Chun Hsieh, Yi-Tien Li, Ying Chieh Wu, Cheng-Ying Chu, Yung-Hsiao Chiang, Wan-Yuo Guo, Chih-Chun Wu, Liang-Wei Chen, Hung-Wen Kao, Wan-Li Lin, Li-Wen Tseng, Ting-Wei Weng, Duen-Pang Kuo, Sho-Jen Cheng, Yung-Chieh Chen, Shiu-Wen Huang, Hsing-Jien Kung, Cheng-Yu Chen","doi":"10.1186/s12929-025-01126-w","DOIUrl":"10.1186/s12929-025-01126-w","url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma multiforme (GBM) is an aggressive brain tumor with chemoresistant, immunosuppressive, and invasive properties. Despite standard therapies, including surgery, radiotherapy, and temozolomide (TMZ) chemotherapy, tumors inevitably recur in the peritumoral region. Targeting GBM-mediated immunosuppressive and invasive properties is a promising strategy to improve clinical outcomes.</p><p><strong>Methods: </strong>We utilized clinical and genomic data from the Taiwan GBM cohort and The Cancer Genome Atlas (TCGA) to analyze RNA sequencing data from patient tumor samples, determining the association of interleukin-19 (Il-19) expression with survival and immunosuppressive activity. Gene set enrichment analysis (GSEA) was performed to assess the relationship between the enrichment levels of immune subsets and Il-19 expression level, and Ingenuity Pathway Analysis (IPA) was used to predict immune responses. Cytokine array and single-cell RNA sequencing were used to examine the effects of IL-19 blockade on tumor immune microenvironment, including tumor-infiltrating leukocyte profiles, differentiation and immunosuppressive genes expression in tumor associated macrophages (TAM). CRISPR Il-19<sup>-/-</sup> cell lines and Il-19<sup>-/-</sup> mice were used to examine the role of IL-19 in tumor invasion and M2-like macrophage-mediated immunosuppression. Additionally, we developed novel cholesterol-polyethylene glycol-superparamagnetic iron oxide-IL-19 antibody nanoparticles (CHOL-PEG-SPIO-IL-19), characterized them using dynamic light scattering and transmission electron microscopy, Fourier-Transform Infrared spectroscopy, prussian blue assay, and conducted in vivo magnetic resonance imaging (MRI) in a human glioblastoma stem cell-derived GBM animal model.</p><p><strong>Result: </strong>Genomic screening and IPA analysis identified IL-19 as a predicted immunosuppressive cytokine in the peritumoral region, associated with poor survival in patients with GBM. Blocking IL-19 significantly inhibited tumor progression of both TMZ-sensitive (TMZ-S) and TMZ-resistant (TMZ-R) GBM-bearing mice, and modulated the immune response within the GBM microenvironment. Single-cell transcriptome analysis reveal that IL-19 antibody treatment led to a marked increase in dendritic cells and monocyte/macrophage subsets associated with interferon-gamma signaling pathways. IL-19 blockade promoted T cell activation and reprogrammed tumor-associated macrophages toward weakened pro-tumoral phenotypes with reduced Arginase 1 expression. Il19<sup>-/-</sup> M2-like bone marrow-derived macrophages with lower Arginase 1 level lost their ability to suppress CD8 T cell activation. These findings indicated that IL-19 suppression limits TAM-mediated immune suppression. Molecular studies revealed that IL-19 promotes TMZ-resistant GBM cell migration and invasion through a novel IL-19/WISP1 signaling pathway. For clinical translation, we developed a novel CHOL","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"34"},"PeriodicalIF":9.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889942/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143585876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure.","authors":"Bahar Aksan, Daniela Mauceri","doi":"10.1186/s12929-025-01128-8","DOIUrl":"10.1186/s12929-025-01128-8","url":null,"abstract":"<p><p>Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"33"},"PeriodicalIF":9.0,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11884128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biological functions and therapeutic applications of human mucosal-associated invariant T cells.","authors":"Ying Fang, Yuning Chen, Siyue Niu, Zibai Lyu, Yanxin Tian, Xinyuan Shen, Yan-Ruide Li, Lili Yang","doi":"10.1186/s12929-025-01125-x","DOIUrl":"10.1186/s12929-025-01125-x","url":null,"abstract":"<p><p>Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"32"},"PeriodicalIF":9.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blocking the SIRPα-CD47 axis promotes macrophage phagocytosis of exosomes derived from visceral adipose tissue and improves inflammation and metabolism in mice.","authors":"Yun-Kai Lin, Yu-Fei Pan, Tian-Yi Jiang, Yi-Bin Chen, Tai-Yu Shang, Meng-You Xu, Hui-Bo Feng, Yun-Han Ma, Ye-Xiong Tan, Hong-Yang Wang, Li-Wei Dong","doi":"10.1186/s12929-025-01124-y","DOIUrl":"10.1186/s12929-025-01124-y","url":null,"abstract":"<p><strong>Background: </strong>Adipose tissue plays a pivotal role in systemic metabolism and maintaining bodily homeostasis. Exosomes from adipose tissues, known as AT-Exos, are recognized as important messengers in the communication between adipose tissue and other organs. Despite this, the alterations in exosome composition and the functional disparities among depot-specific AT-Exos in obesity remain elusive.</p><p><strong>Methods: </strong>In this work, we utilized lipidomics and microRNA (miRNA) sequencing to elucidate the lipid and miRNA profiles of AT-Exos in a diet-induced obesity model. We identified obesity-related miRNAs in AT-Exos and further explored their mechanisms using gain- and loss-of-function experiments. To evaluate the metabolic effects of AT-Exos on adipocytes, we conducted RNA-sequencing (RNA-seq) and confirmed our findings through Quantitative Real-time PCR (qPCR) and Western bolt analyses. Meanwhile, a mouse model with intraperitoneal injections was utilized to validate the role of exosomes derived from visceral white adipose tissue (vWAT-Exos) in obesity progression in vivo. Finally, we explored potential therapeutic intervention strategies targeting AT-Exos, particularly focusing on modulating the SIRPα-CD47 axis to enhance macrophage phagocytosis using Leptin-deficient (ob/ob) mice and SIRPα knock-out mice.</p><p><strong>Results: </strong>Our study revealed that obesity-related metabolism affects the biological processes of AT-Exos, with depot-specific secretion patterns. In obesity, the lipidome profile of AT-Exos was significantly altered, and diet can modify the miRNA content and function within these exosomes, influencing lipid metabolism and inflammatory pathways that contribute to metabolic dysregulation. Specifically, we identified that miR-200a-3p and miR-200b-3p promoted lipid accumulation in 3T3L1 cells partly through the PI3K/AKT/mTOR pathway. RNA-Seq analysis revealed that AT-Exos from different fat depots exerted distinct effects on adipocyte metabolism, with obese vWAT-Exos being notably potent in triggering inflammation and lipid accumulation in diet-induced obesity. Additionally, we found that inhibiting the SIRPα-CD47 axis can mitigate metabolic disorders induced by obese vWAT-Exos or ob/ob mice, partly due to the enhanced clearance of vWAT-Exos. Consistent with this, SIRPα-deficient mice exhibited a reduction in vWAT-Exos and displayed greater resistance to obesity.</p><p><strong>Conclusions: </strong>This study elucidates that diet-induced obesity altered the lipid and miRNA profiles of AT-Exos, which involved in modulating adipocyte inflammation and metabolic balance. The SIRPα-CD47 axis emerges as a potential therapeutic target for obesity and its associated complications.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"31"},"PeriodicalIF":9.0,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Treating neuromuscular diseases: unveiling gene therapy breakthroughs and pioneering future applications.","authors":"Yu-Fu Wu, Jun-An Chen, Yuh-Jyh Jong","doi":"10.1186/s12929-025-01123-z","DOIUrl":"10.1186/s12929-025-01123-z","url":null,"abstract":"<p><p>In this review, we highlight recent advancements in adeno-associated virus (AAV)-based gene therapy for genetic neuromuscular diseases (NMDs), focusing on spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). We discuss the current FDA-approved gene therapies for NMDs and provide updates on preclinical studies that demonstrate the potential of various AAV-based gene therapies to reduce SMA severity and serve as effective treatments for DMD. Additionally, we explore the transformative impact of CRISPR/Cas9 technology on the future of gene therapy for NMDs. Despite these encouraging developments, further research is required to identify robust biomarkers that can guide treatment decisions and predict outcomes. Overall, these pioneering advancements in AAV-based gene therapy lay the groundwork for future efforts aimed at curing genetic NMDs and offer a roadmap for developing gene therapies for other neurodegenerative diseases.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"30"},"PeriodicalIF":9.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143472416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Ru Hee, Dayna Cheng, Yu-Hong Chen, Sheng-Hsuan Wang, Chiao-Hsuan Chao, Sheng-Wen Huang, Pin Ling, Shu-Wen Wan, Chih-Peng Chang, Justin Jang Hann Chu, Trai-Ming Yeh, Jen-Ren Wang
{"title":"A non-structural protein 1 substitution of dengue virus enhances viral replication by interfering with the antiviral signaling pathway.","authors":"Jing-Ru Hee, Dayna Cheng, Yu-Hong Chen, Sheng-Hsuan Wang, Chiao-Hsuan Chao, Sheng-Wen Huang, Pin Ling, Shu-Wen Wan, Chih-Peng Chang, Justin Jang Hann Chu, Trai-Ming Yeh, Jen-Ren Wang","doi":"10.1186/s12929-024-01116-4","DOIUrl":"10.1186/s12929-024-01116-4","url":null,"abstract":"<p><strong>Background: </strong>The largest dengue virus 2 (DENV2) outbreak occurred in Taiwan in 2015, resulting in many fatalities. We therefore aim to identify crucial genetic variations which determine the virulence of the 2015 Taiwan outbreak strains.</p><p><strong>Methods: </strong>We compared the 2015 Taiwan DENV2 sequences to the pre-2015 sequences. Reverse genetics (rg) viruses with substitutions were produced and the viral growth kinetics were investigated. We treated A549 cells with interferon (IFN) to determine the interferon-stimulated genes (ISGs) expression and STAT1 phosphorylation in the rg viral infection and plasmid transfection systems. IFN and pro-inflammatory cytokines levels were measured upon DENV infection using ELISA.</p><p><strong>Results: </strong>The rgNS1-K272R mutant showed faster replication in IFN-I producing cells compared to wildtype (WT) virus. Results revealed that NS1-K272R substitution contributed to higher soluble NS1 secretion and evade the antiviral response by suppressing the expression of ISGs and STAT1 phosphorylation compared to NS1-WT. Infection with rgNS1-K272R induced higher secretion of pro-inflammatory cytokines through the activation of canonical nuclear factor-kappa B (NF-κB) signaling pathway.</p><p><strong>Conclusions: </strong>Our results revealed that the DENV NS1 amino acid substitution affects the NS1 ability in immune evasion, which may contribute to the largest dengue outbreak in Taiwan since the 1990s.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"25"},"PeriodicalIF":9.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143458202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}