The endocannabinoidome-gut microbiome-brain axis as a novel therapeutic target for autism spectrum disorder.

IF 9 2区 医学 Q1 CELL BIOLOGY
Antonella Campanale, Dario Siniscalco, Vincenzo Di Marzo
{"title":"The endocannabinoidome-gut microbiome-brain axis as a novel therapeutic target for autism spectrum disorder.","authors":"Antonella Campanale, Dario Siniscalco, Vincenzo Di Marzo","doi":"10.1186/s12929-025-01145-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Autism spectrum disorder (ASD) is characterized by disruption of the gut-brain axis, which leads to behavioral, psychiatric, metabolic and gastrointestinal symptoms. Effective ASD treatments are limited. Research highlights the roles of the endocannabinoidome (eCBome) and gut microbiome (GM), both crucial for brain and gut function. This review summarizes research on therapeutic targets within the eCBome-GM-brain axis for ASD and related comorbidities.</p><p><strong>Discussion: </strong>Evidence suggests that reduced levels of eCBome mediators, like oleoylethanolamide and anandamide, and altered cannabinoid type 1 and type 2 (CB1 and CB2) receptors activity may contribute to ASD symptoms, making them promising targets. Modulating the eCBome-GM-brain axis with inhibitors of fatty acid amide hydrolase (FAAH), transient receptor potential vanilloid 1, and monoacylglycerol lipase (MAGL) may improve repetitive, stereotypical, and sensory behaviors, and alleviate sociability impairments, depression and anxiety. However, inhibition of FAAH and MAGL may also induce ADHD-like behaviors, which can be reversed by CB1 inverse agonists. Targeting metabotropic glutamate receptor 5 to increase levels of the eCBome mediator 2-arachidonoylglycerol (2-AG) may benefit ASD-related behaviors. eCBome mediators such as 2-AG, 1/2-palmitoylglycerol and palmitoylethanolamide may also help manage ASD- and GI-related symptoms, and systemic inflammation. Other potential therapeutic targets that deserve further investigation are eCBome-related receptors G-protein-coupled receptor 55 and peroxisome proliferator-activated receptors-alpha and -gamma, and the cyclooxygenase-2/prostaglandin E2 pathway, which may address hyperactivity and repetitive behaviors. Additionally, mucin-degrading genera like Akkermansia and Ruminococcus may improve ASD-related GI symptoms such as hypersensitivity and inflammation. Selective antibiotics against specific Clostridium strains may improve irritability and aggression. In ASD with ADHD and OCD, treatments may involve modulating the CB1 and CB2 receptor, and bacterial families like Ruminococcaceae and Lachnospiraceae. Lastly, modulating the abundance of anti-inflammatory genera like Prevotella and Anaeroplasma, and taxa associated with gut health such as Roseburia may also offer therapeutic value.</p><p><strong>Conclusion: </strong>The eCBome-GM-brain axis is a promising target for ASD treatment, meriting further clinical and preclinical research.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"60"},"PeriodicalIF":9.0000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-025-01145-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Autism spectrum disorder (ASD) is characterized by disruption of the gut-brain axis, which leads to behavioral, psychiatric, metabolic and gastrointestinal symptoms. Effective ASD treatments are limited. Research highlights the roles of the endocannabinoidome (eCBome) and gut microbiome (GM), both crucial for brain and gut function. This review summarizes research on therapeutic targets within the eCBome-GM-brain axis for ASD and related comorbidities.

Discussion: Evidence suggests that reduced levels of eCBome mediators, like oleoylethanolamide and anandamide, and altered cannabinoid type 1 and type 2 (CB1 and CB2) receptors activity may contribute to ASD symptoms, making them promising targets. Modulating the eCBome-GM-brain axis with inhibitors of fatty acid amide hydrolase (FAAH), transient receptor potential vanilloid 1, and monoacylglycerol lipase (MAGL) may improve repetitive, stereotypical, and sensory behaviors, and alleviate sociability impairments, depression and anxiety. However, inhibition of FAAH and MAGL may also induce ADHD-like behaviors, which can be reversed by CB1 inverse agonists. Targeting metabotropic glutamate receptor 5 to increase levels of the eCBome mediator 2-arachidonoylglycerol (2-AG) may benefit ASD-related behaviors. eCBome mediators such as 2-AG, 1/2-palmitoylglycerol and palmitoylethanolamide may also help manage ASD- and GI-related symptoms, and systemic inflammation. Other potential therapeutic targets that deserve further investigation are eCBome-related receptors G-protein-coupled receptor 55 and peroxisome proliferator-activated receptors-alpha and -gamma, and the cyclooxygenase-2/prostaglandin E2 pathway, which may address hyperactivity and repetitive behaviors. Additionally, mucin-degrading genera like Akkermansia and Ruminococcus may improve ASD-related GI symptoms such as hypersensitivity and inflammation. Selective antibiotics against specific Clostridium strains may improve irritability and aggression. In ASD with ADHD and OCD, treatments may involve modulating the CB1 and CB2 receptor, and bacterial families like Ruminococcaceae and Lachnospiraceae. Lastly, modulating the abundance of anti-inflammatory genera like Prevotella and Anaeroplasma, and taxa associated with gut health such as Roseburia may also offer therapeutic value.

Conclusion: The eCBome-GM-brain axis is a promising target for ASD treatment, meriting further clinical and preclinical research.

内源性大麻素-肠道微生物组-脑轴作为自闭症谱系障碍的新治疗靶点。
自闭症谱系障碍(ASD)的特征是肠-脑轴的破坏,导致行为、精神、代谢和胃肠道症状。有效的ASD治疗是有限的。研究强调了内源性大麻素组(echome)和肠道微生物组(GM)的作用,它们对大脑和肠道功能都至关重要。本文综述了echome - gm -brain轴治疗ASD及相关合并症的研究进展。讨论:有证据表明,echome介质(如油基乙醇酰胺和大麻酰胺)水平的降低,以及大麻素1型和2型(CB1和CB2)受体活性的改变可能导致ASD症状,使其成为有希望的靶点。用脂肪酸酰胺水解酶(FAAH)、瞬时受体电位香兰素1和单酰基甘油脂肪酶(MAGL)抑制剂调节echome - gm -脑轴可能改善重复、刻板和感觉行为,减轻社交障碍、抑郁和焦虑。然而,抑制FAAH和MAGL也可能诱导adhd样行为,这可以通过CB1逆激动剂逆转。靶向代谢性谷氨酸受体5以增加echome介质2-花生四烯醇甘油(2-AG)的水平可能有益于asd相关行为。echome介质如2-AG、1/2-棕榈酰甘油和棕榈酰乙醇酰胺也可能有助于控制ASD和gi相关症状以及全身性炎症。其他值得进一步研究的潜在治疗靶点是echome相关受体-g蛋白偶联受体55和过氧化物酶体增殖激活受体- α和- γ,以及环氧化酶-2/前列腺素E2途径,这些途径可能解决多动症和重复行为。此外,Akkermansia和Ruminococcus等黏液降解属可能改善asd相关的胃肠道症状,如过敏和炎症。针对特定梭状芽胞杆菌菌株的选择性抗生素可改善烦躁和攻击性。对于伴有ADHD和OCD的ASD,治疗可能涉及调节CB1和CB2受体,以及细菌家族,如瘤胃球菌科和毛螺科。最后,调节普雷沃氏菌和无氧原体等抗炎属的丰度,以及与肠道健康相关的分类群,如玫瑰花菌,也可能提供治疗价值。结论:echome - gm -脑轴是ASD治疗的一个有希望的靶点,值得进一步的临床和临床前研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomedical Science
Journal of Biomedical Science 医学-医学:研究与实验
CiteScore
18.50
自引率
0.90%
发文量
95
审稿时长
1 months
期刊介绍: The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信