Journal of Chemical Ecology最新文献

筛选
英文 中文
Where Does All the Poison Go? Investigating Toxicokinetics of Newt (Taricha) Tetrodotoxin (TTX) in Garter Snakes (Thamnophis). 毒药都去哪儿了?探究蝾螈(Taricha)河豚毒素(TTX)在眼镜蛇(Thamnophis)体内的毒代动力学。
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-06-06 DOI: 10.1007/s10886-024-01517-7
Kelly E Robinson, Haley A Moniz, Amber N Stokes, Chris R Feldman
{"title":"Where Does All the Poison Go? Investigating Toxicokinetics of Newt (Taricha) Tetrodotoxin (TTX) in Garter Snakes (Thamnophis).","authors":"Kelly E Robinson, Haley A Moniz, Amber N Stokes, Chris R Feldman","doi":"10.1007/s10886-024-01517-7","DOIUrl":"10.1007/s10886-024-01517-7","url":null,"abstract":"<p><p>Animals that consume toxic diets provide models for understanding the molecular and physiological adaptations to ecological challenges. Garter snakes (Thamnophis) in western North America prey on Pacific newts (Taricha), which employ tetrodotoxin (TTX) as an antipredator defense. These snakes possess mutations in voltage-gated sodium channels (Na<sub>v</sub>), the molecular targets of TTX, that decrease the binding ability of TTX to sodium channels (target-site resistance). However, genetic variation at these loci that cannot explain all the phenotypic variation in TTX resistance in Thamnophis. We explored a separate means of resistance, toxin metabolism, to determine if TTX-resistant snakes either rapidly remove TTX or sequester TTX. We examined the metabolism and distribution of TTX in the body (toxicokinetics), to determine differences between TTX-resistant and TTX-sensitive snakes in the rates at which TTX is eliminated from organs and the whole body (using TTX half-life as our metric). We assayed TTX half-life in snakes from TTX-resistant and TTX-sensitive populations of three garter snake species with a coevolutionary history with newts (T. atratus, T. couchii, T. sirtalis), as well as two non-resistant \"outgroup\" species (T. elegans, Pituophis catenifer) that seldom (if ever) engage newts. We found TTX half-life varied across species, populations, and tissues. Interestingly, TTX half-life was shortest in T. elegans and P. catenifer compared to all other snakes. Furthermore, TTX-resistant populations of T. couchii and T. sirtalis eliminated TTX faster (shorter TTX half-life) than their TTX-sensitive counterparts, while populations of TTX-resistant and TTX-sensitive T. atratus showed no difference rates of TTX removal (same TTX half-life). The ability to rapidly eliminate TTX may have permitted increased prey consumption, which may have promoted the evolution of additional resistance mechanisms. Finally, snakes still retain substantial amounts of TTX, and we projected that snakes could be dangerous to their own predators days to weeks following the ingestion of a single newt. Thus, aspects of toxin metabolism may have been key in driving predator-prey relationships, and important in determining other ecological interactions.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"489-502"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic Alfalfa Infusion Odour Attracts Gravid Culex quinquefasciatus Under Laboratory Conditions. 实验室条件下合成紫花苜蓿输液气味对妊娠五带喙库蚊的吸引力
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-07-13 DOI: 10.1007/s10886-024-01528-4
Betelehem Wondwosen, Elin Isberg, Göran Birgersson, Sharon R Hill, Rickard Ignell
{"title":"Synthetic Alfalfa Infusion Odour Attracts Gravid Culex quinquefasciatus Under Laboratory Conditions.","authors":"Betelehem Wondwosen, Elin Isberg, Göran Birgersson, Sharon R Hill, Rickard Ignell","doi":"10.1007/s10886-024-01528-4","DOIUrl":"10.1007/s10886-024-01528-4","url":null,"abstract":"<p><p>Gravid culicine mosquitoes rely on olfactory cues for selecting breeding sites containing organic detritus. While this capacity of the mosquitoes is used for surveillance and control, the current methodology is unwieldy, unreliable and expensive in time and labour. This study evaluated the dose-dependent attraction and oviposition response of gravid Culex quinquefasciatus to alfalfa infusions. Through combined chemical and electrophysiological analyses, bioactive volatile organic compounds (VOCs) in the headspace of alfalfa infusions, eliciting attraction, were identified. While phenolic and indolic compounds were the most abundant bioactive VOCs, additional VOCs, including a monoterpene, were required to elicit a significant behavioural response to the synthetic odour blend of alfalfa infusions. Comparative analysis with the commercially available mosquito oviposition pheromone (MOP) was also conducted demonstrating that this standardised synthetic alfalfa infusion odour blend offers a promising lure for targeted surveillance and control of Culex mosquitoes, which may contribute to disease prevention and public health protection.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"419-429"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extensive Local Geographic Variation in Locoweed Toxin Produced by a Fungal Endophyte. 真菌内生菌产生的骆驼蓬毒素存在广泛的地方性差异
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-09-05 DOI: 10.1007/s10886-024-01529-3
Jeremy Davis, Matthew Scott, Daniel Cook, Dale Gardner, Geoffrey Morse, Michael Grillo
{"title":"Extensive Local Geographic Variation in Locoweed Toxin Produced by a Fungal Endophyte.","authors":"Jeremy Davis, Matthew Scott, Daniel Cook, Dale Gardner, Geoffrey Morse, Michael Grillo","doi":"10.1007/s10886-024-01529-3","DOIUrl":"10.1007/s10886-024-01529-3","url":null,"abstract":"<p><p>Legumes are notorious for coevolutionary arms races where chemical defenses are employed to ward off herbivores-particularly insect seed predators. Locoweeds are legumes containing the toxic alkaloid swainsonine which can poison livestock, but its role as a deterrent for insects is unknown. Swainsonine is produced by the fungal endophyte Alternaria section Undifilum, and the chemical composition of the toxin has been well characterized. Despite this knowledge, the ecological roles and evolutionary drivers of swainsonine toxins in locoweeds remain uncertain. Here, we quantify swainsonine concentrations and herbivory levels in the hyper-diverse locoweed Astragalus lentiginosus to evaluate its role as an evolved chemical defense. We found that A. lentiginosus shows considerable variation in swainsonine concentrations according to variety, in particular showing presence/absence variation at both population and local geographic scales. Surprisingly, herbivory levels from presumed generalist insects emerging from fruits showed no correlation with swainsonine concentrations. Conversely, seed and fruit herbivory levels linked to specialist Acanthoscelides seed beetles increased with concentrations of swainsonine-suggesting a possible coevolutionary arms race. Our results highlight that variation in endophyte-produced toxin systems may not follow classical expectations for geographic variation and ecological roles of plant chemicals. We discuss the implications of these results on plant-endophytic toxin systems and coevolutionary dynamics more broadly, highlighting a considerable need for more research in these systems.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"465-477"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing Oak Buds Produce Volatile Emissions in Response to Herbivory by Freshly Hatched Caterpillars. 发育中的橡树芽产生挥发性排放物,以应对刚孵化的毛毛虫的食草行为。
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-06-29 DOI: 10.1007/s10886-024-01520-y
Jessica L Graham, Michael Staudt, Bruno Buatois, Samuel P Caro
{"title":"Developing Oak Buds Produce Volatile Emissions in Response to Herbivory by Freshly Hatched Caterpillars.","authors":"Jessica L Graham, Michael Staudt, Bruno Buatois, Samuel P Caro","doi":"10.1007/s10886-024-01520-y","DOIUrl":"10.1007/s10886-024-01520-y","url":null,"abstract":"<p><p>Plant responses to damage by insectivorous herbivores are well-documented in mature leaves. The resulting herbivore-induced plant volatiles (HIPVs) protect the plant by attracting carnivorous arthropods and even some insectivorous vertebrates, to parasitize or consume the plant invaders. However, very little is known about plant production of HIPVs in developing buds, particularly when herbivorous insects are too small to be considered a prey item. It is additionally unclear whether plants respond differently to generalist and specialist chewing insects that overlap in distribution. Therefore, we compared HIPV production of Downy oak (Quercus pubescens Willd.) buds infested with freshly hatched caterpillars of Tortrix viridana (specialist) and Operophtera brumata (generalist), against uninfested buds. Of the compounds identified in both years of the experiment, we found that (Z)-hex-3-enyl acetate, (E)-β-ocimene, acetophenone, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, α-copaene, α-humulene, (E)-caryophyllene, and (E,E)-α-farnesene appeared to be higher in infested buds compared to controls. We found no difference in HIPV production between the specialist and the generalist herbivores. Production of HIPVs was also associated with leaf damage, with higher HIPV production in more severely attacked buds. Thus, our study shows that oak trees already start responding to insect herbivory before leaves are developed, by producing compounds similar to those found in damaged mature leaves. Future work should focus on how Downy oak may benefit from initiating alarm cues at a time when carnivorous arthropods and insectivorous vertebrates are unable to use herbivorous insects as host or food.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"503-514"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of Acquired Perfumes and Endogenous Lipid Secretions in Orchid Bees. 兰花蜜蜂后天香水和内源性脂质分泌物的进化
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-07-03 DOI: 10.1007/s10886-024-01514-w
Thomas Eltz, Tobias Mende, Santiago R Ramírez
{"title":"Evolution of Acquired Perfumes and Endogenous Lipid Secretions in Orchid Bees.","authors":"Thomas Eltz, Tobias Mende, Santiago R Ramírez","doi":"10.1007/s10886-024-01514-w","DOIUrl":"10.1007/s10886-024-01514-w","url":null,"abstract":"<p><p>Male orchid bees are unique in the animal kingdom for making perfumes that function as sex pheromone. Males collect volatile chemicals from the environment in the neotropical forests, including floral and non-floral sources, creating complex but species-specific blends. Male orchid bees exhibit several adaptations to facilitate perfume collection and storage. When collecting volatile compounds, males apply lipid substances that they secrete from cephalic labial glands onto the fragrant substrate. These lipids help dissolve and retain the volatiles, similar to the process of 'enfleurage' in the traditional perfume industry. We investigated how the chemical composition of acquired perfume and labial gland secretions varied across the phylogeny of orchid bees, including 65 species in five genera from Central and South America. Perfumes showed rapid evolution as revealed by low overall phylogenetic signal, in agreement with the idea that perfume compounds diverge rapidly and substantially among closely related species due to their role in species recognition. A possible exception were perfumes in the genus Eulaema, clustering closely in chemospace, partly mediated by high proportions of carvone and trans-carvone oxide. Labial gland secretions, in contrast, showed a strong phylogenetic signal at the genus level, with secretions of Eufriesea and Exaerete dominated by fatty acids and Eulaema dominated by saturated acetates of chain lengths 12 to 16 C-atoms. Secretions of the majority of Euglossa were heavily dominated by one unsaturated long chain diacetate, (9Z)-Eicosen-1,20-diyldiacetate. However, we also identified few highly divergent species of Euglossa in four subclades (11 species) that appear to have secondarily replaced the diacetate with other compounds. In comparison with environment-derived perfumes, the evolution of labial gland secretion is much slower, likely constrained by the underlying biochemical pathways, but perhaps influenced by perfume-solvent chemical interactions.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"430-438"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population Density Affects Drosophila Male Pheromones in Laboratory-Acclimated and Natural Lines. 种群密度对实验室驯化和自然品系果蝇雄性信息素的影响
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-08-26 DOI: 10.1007/s10886-024-01540-8
Jean-François Ferveur, Jérôme Cortot, Bernard Moussian, Claude Everaerts
{"title":"Population Density Affects Drosophila Male Pheromones in Laboratory-Acclimated and Natural Lines.","authors":"Jean-François Ferveur, Jérôme Cortot, Bernard Moussian, Claude Everaerts","doi":"10.1007/s10886-024-01540-8","DOIUrl":"10.1007/s10886-024-01540-8","url":null,"abstract":"<p><p>In large groups of vertebrates and invertebrates, aggregation can affect biological characters such as gene expression, physiological, immunological and behavioral responses. The insect cuticle is covered with hydrocarbons (cuticular hydrocarbons; CHCs) which reduce dehydration and increase protection against xenobiotics. Drosophila melanogaster and D. simulans flies also use some of their CHCs as contact pheromones. In these two sibling species, males also produce the volatile pheromone 11-cis-Vaccenyl acetate (cVa). To investigate the effect of insect density on the production of CHCs and cVa we compared the level of these male pheromones in groups of different sizes. These compounds were measured in six lines acclimated for many generations in our laboratory - four wild-type and one CHC mutant D. melanogaster lines plus one D. simulans line. Increasing the group size substantially changed pheromone amounts only in the four D. melanogaster wild-type lines. To evaluate the role of laboratory acclimation in this effect, we measured density-dependent pheromonal production in 21 lines caught in nature after 1, 12 and 25 generations in the laboratory. These lines showed varied effects which rarely persisted across generations. Although increasing group size often affected pheromone production in laboratory-established and freshly-caught D. melanogaster lines, this effect was not linear, suggesting complex determinants.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"536-548"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatile Terpene Profiles of Needle and Phloem Tissues of Healthy and Tomicus destruens-Infested Pinus brutia Trees. 健康松树和受腐烂松树侵染的松针和叶肉组织的挥发性萜烯谱。
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-08-23 DOI: 10.1007/s10886-024-01541-7
Kübra Kocabıyık, Nadir Erbilgin, Gürkan Semiz
{"title":"Volatile Terpene Profiles of Needle and Phloem Tissues of Healthy and Tomicus destruens-Infested Pinus brutia Trees.","authors":"Kübra Kocabıyık, Nadir Erbilgin, Gürkan Semiz","doi":"10.1007/s10886-024-01541-7","DOIUrl":"10.1007/s10886-024-01541-7","url":null,"abstract":"<p><p>Coniferous trees produce secondary or defense chemicals, such as terpenes, against pest insects. Terpenes could serve as constitutive or induced defensive mechanisms, defending the tree from invasive herbivores. The Mediterranean pine shoot beetle Tomicus destruens colonizes stems and branches of Pinus brutia trees and even can kill mature trees during periodic outbreaks. We investigated whether terpene profiles of needle and stem of P. brutia trees differ between health and those infested by T. destruens. We selected 20 healthy and T. destruens-infested trees and analyzed the monoterpenes and sesquiterpenes of their needles and phloem. We found higher concentrations of tricyclene, camphene and p-cymene in the phloem of infested trees. Similarly, the needles of infested trees had higher concentrations of α-pinene, β-pinene, myrcene, limonene, trans-β-caryophyllene and α-humulene than healthy trees. These results show that the monoterpene and sesquiterpene profiles of P. brutia trees differed between healthy and infested trees, suggesting that volatile terpenes may be an important part of plant-induced responses against T. destruens.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"529-535"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Chemistry of the Defensive Secretions of Three Species of Millipedes in the Genus Brachycybe. Brachycybe 属三种千足虫防御性分泌物的化学性质。
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-06-10 DOI: 10.1007/s10886-024-01518-6
Paige Banks, Emma M Funkhouser, Angie M Macias, Brian Lovett, Shelby Meador, Arden Hatch, H Martin Garraffo, Kaitie C Cartwright, Matt T Kasson, Paul E Marek, Tappey H Jones, Emily Mevers
{"title":"The Chemistry of the Defensive Secretions of Three Species of Millipedes in the Genus Brachycybe.","authors":"Paige Banks, Emma M Funkhouser, Angie M Macias, Brian Lovett, Shelby Meador, Arden Hatch, H Martin Garraffo, Kaitie C Cartwright, Matt T Kasson, Paul E Marek, Tappey H Jones, Emily Mevers","doi":"10.1007/s10886-024-01518-6","DOIUrl":"10.1007/s10886-024-01518-6","url":null,"abstract":"<p><p>Millipedes have long been known to produce a diverse array of chemical defense agents that deter predation. These compounds, or their precursors, are stored in high concentration within glands (ozadenes) and are released upon disturbance. The subterclass Colobognatha contains four orders of millipedes, all of which are known to produce terpenoid alkaloids-spare the Siphonophorida that produce terpenes. Although these compounds represent some of the most structurally-intriguing millipede-derived natural products, they are the least studied class of millipede defensive secretions. Here, we describe the chemistry of millipede defensive secretions from three species of Brachycybe: Brachycybe producta, Brachycybe petasata, and Brachycybe rosea. Chemical investigations using mass spectrometry-based metabolomics, chemical synthesis, and 2D NMR led to the identification of five alkaloids, three of which are new to the literature. All identified compounds are monoterpene alkaloids with the new compounds representing indolizidine (i.e. hydrogosodesmine) and quinolizidine alkaloids (i.e. homogosodesmine and homo-hydrogosodesmine). The chemical diversity of these compounds tracks the known species phylogeny of this genus, rather than the geographical proximity of the species. The indolizidines and quinolizidines are produced by non-sympatric sister species, B. producta and B. petasata, while deoxybuzonamine is produced by another set of non-sympatric sister species, B. rosea and Brachycybe lecontii. The fidelity between the chemical diversity and phylogeny strongly suggests that millipedes generate these complex defensive agents de novo and begins to provide insights into the evolution of their biochemical pathways.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"478-488"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493816/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141296190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knock-Out of ACY-1 Like Gene in Spodoptera litura Supports the Notion that FACs Improve Nitrogen Metabolism. 斑翅虫 ACY-1 类基因的基因敲除支持了 FACs 可改善氮代谢的观点。
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-06-24 DOI: 10.1007/s10886-024-01512-y
Tsuyoshi Maruoka, Yu Shirai, Takaaki Daimon, Rei Fujii, Masako Dannoura, Irmgard Seidl-Adams, Naoki Mori, Naoko Yoshinaga
{"title":"Knock-Out of ACY-1 Like Gene in Spodoptera litura Supports the Notion that FACs Improve Nitrogen Metabolism.","authors":"Tsuyoshi Maruoka, Yu Shirai, Takaaki Daimon, Rei Fujii, Masako Dannoura, Irmgard Seidl-Adams, Naoki Mori, Naoko Yoshinaga","doi":"10.1007/s10886-024-01512-y","DOIUrl":"10.1007/s10886-024-01512-y","url":null,"abstract":"<p><p>Volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and N-linolenoyl-L-glutamine were originally identified in the regurgitant of Spodoptera exigua larvae. These fatty acid amino acid conjugates (FACs) are known to be elicitors that induce plants to release volatile compounds which in turn attract natural enemies of the larvae such as parasitic wasps. FAC concentrations are regulated by enzymatic biosynthesis and hydrolysis in the intestine of Lepidoptera larvae. It has been proposed that FAC metabolism activates glutamine synthetase and plays an important role in nitrogen metabolism in larvae. In this study, we identified candidate genes encoding a FACs hydrolase in Spodoptera litura using genomic information of various related lepidopteran species in which FACs hydrolases have been reported. We analyzed the importance of FAC hydrolysis on caterpillar performance with CRISPR/Cas9 knock outs. Larvae of strains with an inactive FACs hydrolase excreted FACs in their feces. They absorbed 30% less nitrogen from the diet compared to WT caterpillars resulting in a reduction of their body weight of up to 40% compared to wild type caterpillars. These results suggest that the hydrolysis of FACs is an important metabolism for insects and that FACs are important for larval growth.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"573-580"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Confirmation that Monochamol is a Male Produced Aggregation-Sex Pheromone for Monochamus maculosus Haldeman (Coleoptera: Cerambycidae). 证实 Monochamol 是一种由雄性产生的聚合-性信息素,适用于 Monochamus maculosus Haldeman(鞘翅目:角瓢虫科)。
IF 2.2 3区 环境科学与生态学
Journal of Chemical Ecology Pub Date : 2024-10-01 Epub Date: 2024-08-01 DOI: 10.1007/s10886-024-01530-w
Samara M M Andrade, Quentin Guignard, Sandy M Smith, Jeremy D Allison
{"title":"Confirmation that Monochamol is a Male Produced Aggregation-Sex Pheromone for Monochamus maculosus Haldeman (Coleoptera: Cerambycidae).","authors":"Samara M M Andrade, Quentin Guignard, Sandy M Smith, Jeremy D Allison","doi":"10.1007/s10886-024-01530-w","DOIUrl":"10.1007/s10886-024-01530-w","url":null,"abstract":"<p><p>The recognition of cerambycids as frequent and damaging invaders led to an increase in the interest in the chemical ecology of the group with the identification of pheromones and pheromone-like attractants for well over 100 species. Pheromone components of the Cerambycidae are often phylogenetically conserved, with a single compound serving as a pheromone component for several related species. In the subfamily Lamiinae, the compound 2-(undecyloxy)ethanol (monochamol) has been identified as an aggregation-sex pheromone for several species of the genus Monochamus. In other species, including Monochamus maculosus Haldeman, field trials have demonstrated that monochamol is a pheromone attractant, but at that point it was still unknown as to whether it was a pheromone for this species. Here we report the identification, and laboratory and field trials of a pheromone component produced by adult male M. maculosus. Chemical analyses of headspace volatile collections sampled from field collected beetles of both sexes revealed the presence of one male-specific compound that was identified as 2-(undecyloxy)ethanol. Electroantennography analyses showed that monochamol elicited responses from the antennae of female beetles. Traps baited with monochamol in the field captured M. maculosus adults of both sexes corroborating the identification of monochamol as the sex-aggregation pheromone of this species. The attractivity of monochamol to adult M. maculosus in our field trapping experiment was synergized by the addition of the host volatile α-pinene.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"409-418"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信