{"title":"Male-Specific Substances Possibly Contributing to Nuptial Flight of the Japanese Carpenter Ant Camponotus japonicus (Hymenoptera: Formicidae).","authors":"Shunya Habe, Shigeru Matsuyama, Natsumi Kanzaki, Keiko Hamaguchi, Mamiko Ozaki, Toshiharu Akino","doi":"10.1007/s10886-024-01548-0","DOIUrl":null,"url":null,"abstract":"<p><p>The nuptial flight of ants usually occurs during certain periods of the year. Alate females and males fly out of their nests to mate simultaneously. In the genus Camponotus, sex-specific chemicals are deposited in the male head; however, their roles in nuptial flight have not yet been clarified. This study aimed to elucidate the functions of male-specific chemicals in the Japanese carpenter ant Camponotus japonicus. First, we identified three chemicals characteristic to the male - methyl salicylate (MS), methyl 6-methylsalicylate (MMS), and methyl anthranilate (MA) - all of which triggered electroantennogram (EAG) responses in both alate males and females. As the relative content of MS was insufficient for GC comparison, we investigated the quantitative changes of MMS and MA in the male head capsules before and after flight under laboratory conditions. The amounts of both compounds were significantly reduced after flight, which suggested that males secrete them during flight. Thereafter, a field trap experiment was conducted in three fields of the Kyoto Prefecture, Japan, during the nuptial flight season in 2021 using MMS and MA as baits. The number of captured alate males was significantly higher than that of the females, suggesting that these compounds primarily attracted males rather than females. Considering the field conditions, if the local concentration of these chemicals is increased by male aggregation, females may be attracted as they also showed EAG responses. Our findings represent a first step toward understanding chemically mediated male lek formation during the process of male aggregation syndrome in this species.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01548-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The nuptial flight of ants usually occurs during certain periods of the year. Alate females and males fly out of their nests to mate simultaneously. In the genus Camponotus, sex-specific chemicals are deposited in the male head; however, their roles in nuptial flight have not yet been clarified. This study aimed to elucidate the functions of male-specific chemicals in the Japanese carpenter ant Camponotus japonicus. First, we identified three chemicals characteristic to the male - methyl salicylate (MS), methyl 6-methylsalicylate (MMS), and methyl anthranilate (MA) - all of which triggered electroantennogram (EAG) responses in both alate males and females. As the relative content of MS was insufficient for GC comparison, we investigated the quantitative changes of MMS and MA in the male head capsules before and after flight under laboratory conditions. The amounts of both compounds were significantly reduced after flight, which suggested that males secrete them during flight. Thereafter, a field trap experiment was conducted in three fields of the Kyoto Prefecture, Japan, during the nuptial flight season in 2021 using MMS and MA as baits. The number of captured alate males was significantly higher than that of the females, suggesting that these compounds primarily attracted males rather than females. Considering the field conditions, if the local concentration of these chemicals is increased by male aggregation, females may be attracted as they also showed EAG responses. Our findings represent a first step toward understanding chemically mediated male lek formation during the process of male aggregation syndrome in this species.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.