Journal of Chemical Physics最新文献

筛选
英文 中文
Determination of the particle size distribution of cube-shaped colloidal perovskite quantum dots from photoluminescence spectra: A combined theoretical-experimental approach. 从光致发光光谱确定立方体胶体包晶量子点的粒度分布:一种理论与实验相结合的方法。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0234432
Diego Lourençoni Ferreira, Andreza Germana Silva, Marco Antônio Schiavon, Marcelo Gonçalves Vivas
{"title":"Determination of the particle size distribution of cube-shaped colloidal perovskite quantum dots from photoluminescence spectra: A combined theoretical-experimental approach.","authors":"Diego Lourençoni Ferreira, Andreza Germana Silva, Marco Antônio Schiavon, Marcelo Gonçalves Vivas","doi":"10.1063/5.0234432","DOIUrl":"https://doi.org/10.1063/5.0234432","url":null,"abstract":"<p><p>A theoretical-experimental approach is proposed to convert the photoluminescence spectra of colloidal perovskite quantum dot ensembles into accurate estimates for their intrinsic particle size distribution functions. Two main problems were addressed and properly correlated: the size dependence of the first excitonic transition in a single cube-shaped quantum dot and the inhomogeneous broadening of the fluorescence line shape due to the size nonuniformity of the chemically prepared quantum dot suspension in addition to the single-dot homogeneous broadening. By applying the reported methodology to CsPbBr3 quantum dot samples belonging to the strong and intermediate confinement regimes, the calculated size distributions exhibited close agreement with those obtained from transmission electron microscopy, with precise estimates for the average particle size and standard deviation. Specifically for strongly confined ultrasmall CsPbBr3 quantum dots, the presented spectroscopic model for size distribution computation is based on a new analytical expression for the size-dependent bandgap, which was developed within the framework of the finite-depth square-well effective mass approximation accounting for band nonparabolicity effects. Such a quantum mechanical approach correctly predicts the expected transition to the intermediate confinement regime in sufficiently large quantum dots, which are traditionally described by the well-known bandgap equation in the infinite potential barrier limit with a spatially correlated electron-hole wavefunction and nonparabolic carrier effective masses. The proposed calculation scheme originates from general theoretical considerations so that it can be readily adapted to semiconductor quantum dots of many other systems, from all inorganic metal halides to hybrid perovskite materials, regardless of the adopted chemical synthesis route.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular dynamics study of N,N'-di-n-alkyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI)/rubrene interface: Why the charge transfer at the interface is optimized depending on the alkyl chain length of PTCDI. N,N'-di-n-alkyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI) /rubrene 界面的分子动力学研究:为什么界面上的电荷转移随 PTCDI 烷基链长度的不同而优化。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0232607
Tatsuya Ishiyama, Masahiro Morimoto, Shigeki Naka
{"title":"Molecular dynamics study of N,N'-di-n-alkyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI)/rubrene interface: Why the charge transfer at the interface is optimized depending on the alkyl chain length of PTCDI.","authors":"Tatsuya Ishiyama, Masahiro Morimoto, Shigeki Naka","doi":"10.1063/5.0232607","DOIUrl":"https://doi.org/10.1063/5.0232607","url":null,"abstract":"<p><p>Molecular dynamics simulations were performed to investigate the interfacial structure of the N,N'-di-n-alkyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI)/rubrene interface, which represents the donor/acceptor interface in new types of organic light-emission diodes. In particular, the interfacial structure was examined for different alkyl chain lengths of PTCDI (Cn-PTCDI) at n = 4, 8, and 13, in order to elucidate the observed maximum charge transfer efficiency at the C8-PTCDI/rubrene interface in a recent experiment. The results revealed that the molecular conformation of the acceptor (Cn-PTCDI) molecules at the interface undergoes changes depending on the alkyl chain length when interacting with the rubrene molecule. It was found that the closest complex between Cn-PTCDI and rubrene is formed at n = 8, consistent with the experimental observation. In addition, the interfacial structures of Cn-PTCDI/air and rubrene/air were examined and compared to gain insights into the inherent stability associated with the intermolecular interactions at the interface.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvation of molecules from the family of "domain of unknown function" 3494 and their ability to bind to ice. 功能未知域 "3494 家族分子的溶解度及其与冰结合的能力。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0222179
Jan Zielkiewicz
{"title":"Solvation of molecules from the family of \"domain of unknown function\" 3494 and their ability to bind to ice.","authors":"Jan Zielkiewicz","doi":"10.1063/5.0222179","DOIUrl":"10.1063/5.0222179","url":null,"abstract":"<p><p>In 2012, the molecular structure of a new, broad class of ice-binding proteins, classified as \"domain of unknown function\" (DUF) 3494, was described for the first time. These proteins have a common tertiary structure and are characterized by a very wide spectrum of antifreeze activity (from weakly active to hyperactive). The ice-binding surface (IBS) region of these molecules differs significantly in its structure from the IBS of previously known antifreeze proteins (AFPs), showing a complete lack of regularity and high hydrophilicity. The presence of a regular, repeating structural motif in the IBS region of hitherto known AFP molecules, combined with the hydrophobic nature of this surface, promotes the formation of an ice-like ordering of the solvation water layer and, as a result, facilitates the process of transformation of this water layer into ice. It is, therefore, surprising that the newly discovered DUF3494 class of proteins clearly breaks out of this characteristic. In this paper, using molecular dynamics simulations, we analyze the solvation water structure of the IBS region of both DUF3494 family molecules and AFPs. As we show, although the IBS of DUF3494 molecules does not form an ice-like water structure in the solvation layer, this is compensated by the formation of the equivalent of \"anchored clathrate water,\" in the form of a relatively large number of water molecules bound to the surface of the protein molecule and providing potential binding sites for it to the ice surface.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking luminescent properties of the arylvinylpyrimidine scaffold. 以芳基乙烯基嘧啶支架的发光特性为基准。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0224650
Sergio González-Alfaro, M Paz Fernández-Liencres, Sonia B Jiménez-Pulido, Nuria A Illán-Cabeza, Antonio Sánchez-Ruiz, Joaquín C García-Martínez, Amparo Navarro, Julián Rodríguez-López
{"title":"Benchmarking luminescent properties of the arylvinylpyrimidine scaffold.","authors":"Sergio González-Alfaro, M Paz Fernández-Liencres, Sonia B Jiménez-Pulido, Nuria A Illán-Cabeza, Antonio Sánchez-Ruiz, Joaquín C García-Martínez, Amparo Navarro, Julián Rodríguez-López","doi":"10.1063/5.0224650","DOIUrl":"https://doi.org/10.1063/5.0224650","url":null,"abstract":"<p><p>The exploration of the photophysical properties of push-pull molecules incorporating pyrimidine rings as electron-attracting moieties in their structure continues to be a fascinating area of investigation. A thorough examination of these properties not only contributes to fundamental knowledge but also provides crucial insights for the rational design of emissive materials in prospective applications. In this context, this work conducts an in-depth analysis of four families of 4,6-bis(arylvinyl)pyrimidines, evaluating the influence of substituents on both the aryl groups and position 2 of the pyrimidine ring. While previous research has primarily focused on solution studies, this work emphasizes the importance of examining solid-state photophysics. Through a multidisciplinary approach encompassing optical techniques, x-ray diffraction, and quantum chemical calculations, a comprehensive understanding of the structure-property relationships is achieved. This study underscores the intricate interplay between molecular structure, aggregation, and fluorescence behavior in pyrimidines, offering valuable insights with broader implications beyond academic realms.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing the gauge problem in local hybrid functionals without a calibration function: The choice of local mixing function. 在没有校准函数的局部混合函数中抑制量规问题:局部混合函数的选择
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0233312
Alexei V Arbuznikov, Artur Wodyński, Martin Kaupp
{"title":"Suppressing the gauge problem in local hybrid functionals without a calibration function: The choice of local mixing function.","authors":"Alexei V Arbuznikov, Artur Wodyński, Martin Kaupp","doi":"10.1063/5.0233312","DOIUrl":"https://doi.org/10.1063/5.0233312","url":null,"abstract":"<p><p>Modern functionals based on the exact-exchange (EXX) energy density like local hybrid functionals (LHs) or range-separated LHs have recently received additional attention due to their advantages over established functionals when it comes to the local balance between self-interaction errors and static-correlation errors. A possible theoretical drawback of such functionals over the years has been the so-called gauge problem due to the inherent ambiguity of exchange-energy densities. Modern LHs like LH20t or more sophisticated functionals based thereon have been constructed using suitably optimized calibration functions (CFs) to minimize the mismatch of the semi-local and EXX energy densities. Here, we show that the unphysical contributions arising from the gauge problem may also be reduced significantly without a CF by tailoring the position-dependence of the EXX admixture (local mixing function, LMF) in a way to suppress spurious positive energy-density contributions locally in space. This is achieved by building the so-called x-LMFs upon the ratio between EXX and semi-local exchange-energy densities. The resulting LH24x functional provides similar accuracy, e.g., for the GMTKN55 test suite, as LH20t, but without introduction of a CF! We provide detailed comparative analyses of integrated energies and spatially resolved energy densities. The good performances of LHs for chemically relevant energy differences are to some extent due to the core nature of unphysical artifacts that cancel out efficiently.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immersed boundary method for dynamic simulation of polarizable colloids of arbitrary shape in explicit ion electrolytes. 在显式离子电解质中对任意形状的可极化胶体进行动态模拟的沉浸边界法。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0224153
Emily Krucker-Velasquez, James W Swan, Zachary Sherman
{"title":"Immersed boundary method for dynamic simulation of polarizable colloids of arbitrary shape in explicit ion electrolytes.","authors":"Emily Krucker-Velasquez, James W Swan, Zachary Sherman","doi":"10.1063/5.0224153","DOIUrl":"https://doi.org/10.1063/5.0224153","url":null,"abstract":"<p><p>We develop a computational method for modeling electrostatic interactions of arbitrarily shaped, polarizable objects on colloidal length scales, including colloids/nanoparticles, polymers, and surfactants, dispersed in explicit ion electrolytes and nonionic solvents. Our method computes the nonuniform polarization charge distribution induced in a colloidal particle by both externally applied electric fields and local electric fields arising from other charged objects in the dispersion. This leads to expressions for electrostatic energies, forces, and torques that enable efficient molecular dynamics and Brownian dynamics simulations of colloidal dispersions in electrolytes, which can be harnessed to accurately predict structural and transport properties. We describe an implementation in which colloidal particles are modeled as rigid composites of small spherical beads that tessellate the surface of the particle. The electrostatics calculations are accelerated using a spectrally accurate particle-mesh-Ewald technique implemented on a graphics processing unit and regularized such that the electrostatic calculations are well-defined even for overlapping bodies. We illustrate the effectiveness of this approach with a comprehensive set of calculations: the induced dipole moments and forces for individual, paired, and lattice configurations of spherical colloids in an electric field; the induced dipole moment and torque for anisotropic particles subjected to an electric field; the equilibrium ion distribution in the double layer surrounding charged colloids; the dynamics of charged colloids; and the behavior of ions in the double layer of a polarizable colloid under the influence of an electric field.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Faraday rotation method improves the upper limit of the electron electric-dipole-moment sensitivity. 法拉第旋转法提高了电子电偶矩灵敏度的上限。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0225370
Huagang Xiao, Ruijie Zhang, Tao Gao
{"title":"Faraday rotation method improves the upper limit of the electron electric-dipole-moment sensitivity.","authors":"Huagang Xiao, Ruijie Zhang, Tao Gao","doi":"10.1063/5.0225370","DOIUrl":"https://doi.org/10.1063/5.0225370","url":null,"abstract":"<p><p>The electron electric-dipole-moment (eEDM) is a powerful tool for exploring new particles. The candidates for eEDM search are heavy atoms and their molecules, which are well known for the obvious relativistic effect. Lead atom is considered to be the most ideal relativistic atom [Park et al., Nat. Commun. 11(1), 815 (2020)]. PbH molecule is an important representative of the Pb compound and is considered a cold candidate molecule due to the high diagonal Franck-Condon factors. We systematically investigated the (eEDM) searches of PbH using a two-component approach. The parity- and time-reversal symmetry violation constants of ground and excited states, including internal effective electric field Eeff, electron-nucleon scalar-pseudoscalar interaction constant WP,T, and nuclear magnetic quadrupole moment, were obtained and compared to other molecules. In addition, we designed two experimental methods to measure the sensitivity of the eEDM, indicating that the Faraday rotation method could greatly improve its sensitivity.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmon-enhanced two photon excited emission from edges of one-dimensional plasmonic hotspots with continuous-wave laser excitation. 用连续波激光激发一维等离子体热点边缘的等离子体增强双光子激发发射。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0220026
Tamitake Itoh, Yuko S Yamamoto
{"title":"Plasmon-enhanced two photon excited emission from edges of one-dimensional plasmonic hotspots with continuous-wave laser excitation.","authors":"Tamitake Itoh, Yuko S Yamamoto","doi":"10.1063/5.0220026","DOIUrl":"https://doi.org/10.1063/5.0220026","url":null,"abstract":"<p><p>One-dimensional junctions between parallelly and closely arranged multiple silver nanowires (NWs) exhibit a large electromagnetic (EM) enhancement factor (FR) owing to both localized and surface plasmon resonances. Such junctions are referred to as one-dimensional (1D) hotspots (HSs). This study found that two-photon excited emissions, such as hyper-Rayleigh, hyper-Raman, and two-photon fluorescence of dye molecules, are generated at the edge of 1D HSs of NW dimers with continuous-wave near-infrared (NIR) laser excitation and propagated through 1D HSs; however, they were not generated from the centers of 1D HSs. Numerical EM calculations showed that FR of the NIR region for the edges of 1D HSs was larger than that for the centers by ∼102 times, resulting in the observation of two-photon excited emissions only from the edge of 1D HSs. The analysis of the NW dimer gap distance dependence of FR revealed that the lowest surface plasmon (SP) mode, compressed and localized at the edges of 1D HSs, was the origin of the large FR in the NIR region. The propagation of two-photon-excited emissions was supported by the higher-order coupled SP mode.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alchemical insights into approximately quadratic energies of iso-electronic atoms. 对等电子原子近似二次方能量的炼金术见解。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0225865
Simon León Krug, O Anatole von Lilienfeld
{"title":"Alchemical insights into approximately quadratic energies of iso-electronic atoms.","authors":"Simon León Krug, O Anatole von Lilienfeld","doi":"10.1063/5.0225865","DOIUrl":"https://doi.org/10.1063/5.0225865","url":null,"abstract":"<p><p>Accurate quantum mechanics based predictions of property trends are so important for material design and discovery that even inexpensive approximate methods are valuable. We use the alchemical integral transform to study multi-electron atoms and to gain a better understanding of the approximately quadratic behavior of energy differences between iso-electronic atoms in their nuclear charges. Based on this, we arrive at the following simple analytical estimate of energy differences between any two iso-electronic atoms, ΔE≈-(1+2γNe-1)ΔZZ̄. Here, γ ≈ 0.3766 ± 0.0020 Ha corresponds to an empirical constant, and Ne, ΔZ, and Z̄, respectively, to electron number, nuclear charge difference, and average. We compare the formula's predictive accuracy using experimental numbers and non-relativistic, numerical results obtained via density functional theory (pbe0) for the entire periodic table up to Radon. A detailed discussion of the atomic helium-series is included.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of differential scanning calorimetry data for aged plutonium. 分析老化钚的差示扫描量热数据。
IF 3.1 2区 化学
Journal of Chemical Physics Pub Date : 2024-10-28 DOI: 10.1063/5.0234018
Vincent P Chiravalle
{"title":"Analysis of differential scanning calorimetry data for aged plutonium.","authors":"Vincent P Chiravalle","doi":"10.1063/5.0234018","DOIUrl":"https://doi.org/10.1063/5.0234018","url":null,"abstract":"<p><p>Differential scanning calorimetry data for samples of a 52 year old plutonium alloy with 3.3 at. % Ga that were heated beyond the melting point is analyzed using transition state theory to find activation energies for the δ to ɛ and ɛ to liquid phase transitions. A Bayesian statistical method involving a Gaussian process model is used to find mean values and confidence intervals for the activation energies. The activation energy for the δ to ɛ phase transition increases by 3.3 ± 3.8% per decade, relative to the case when all age related plutonium lattice point defects have been removed through annealing. The corresponding increase in activation energy for the ɛ to liquid transition is shown to be 7.1 ± 1.8% per decade. It is postulated that the change in activation energy with age for both phase transitions is caused, in part, by the accumulation of the same type of lattice point defects associated with the observed increase in elastic bulk modulus over time.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信