The role of the pre-exponential factor on temperature programmed desorption spectra: A computational study of frozen species on interstellar icy grain mantles.
S Pantaleone, L Tinacci, V Bariosco, A Rimola, C Ceccarelli, P Ugliengo
{"title":"The role of the pre-exponential factor on temperature programmed desorption spectra: A computational study of frozen species on interstellar icy grain mantles.","authors":"S Pantaleone, L Tinacci, V Bariosco, A Rimola, C Ceccarelli, P Ugliengo","doi":"10.1063/5.0266978","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature programmed desorption (TPD) is a well-known technique to study gas-surface processes, and it is characterized by two main quantities: the adsorbate binding energy and the pre-exponential factor. While the former has been well addressed in recent years by both experimental and computational methods, the latter remains somewhat ill-defined, and different schemes have been proposed in the literature for its evaluation. In the astrochemistry context, binding energies and pre-exponential factors are key parameters that enter microkinetic models for studying the evolution over time of the chemical species in the universe. In this paper, we studied, by computer simulations, the effect of different pre-exponential factor models using water, ammonia, and methanol adsorbed on amorphous and crystalline ices as test cases: specifically, the one most widely used by the astrochemical community (Herbst-Hasegawa), the models provided by Tait and Campbell, and an extension of the Tait formulation including the calculation of the vibrational partition function. We suggest the methods proposed by Tait and Campbell that provide TPD temperature peaks within 30 K of each other while avoiding demanding quantum mechanical calculations, as they are based on tabulated data. Finally, when the explicit inclusion of the vibrational partition function is needed, we propose a cost-effective strategy to include all the thermal contributions in the partition functions without the need for performing a full vibrational calculation of the whole system.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0266978","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature programmed desorption (TPD) is a well-known technique to study gas-surface processes, and it is characterized by two main quantities: the adsorbate binding energy and the pre-exponential factor. While the former has been well addressed in recent years by both experimental and computational methods, the latter remains somewhat ill-defined, and different schemes have been proposed in the literature for its evaluation. In the astrochemistry context, binding energies and pre-exponential factors are key parameters that enter microkinetic models for studying the evolution over time of the chemical species in the universe. In this paper, we studied, by computer simulations, the effect of different pre-exponential factor models using water, ammonia, and methanol adsorbed on amorphous and crystalline ices as test cases: specifically, the one most widely used by the astrochemical community (Herbst-Hasegawa), the models provided by Tait and Campbell, and an extension of the Tait formulation including the calculation of the vibrational partition function. We suggest the methods proposed by Tait and Campbell that provide TPD temperature peaks within 30 K of each other while avoiding demanding quantum mechanical calculations, as they are based on tabulated data. Finally, when the explicit inclusion of the vibrational partition function is needed, we propose a cost-effective strategy to include all the thermal contributions in the partition functions without the need for performing a full vibrational calculation of the whole system.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.