{"title":"Chemically reactive and aging macromolecular mixtures. II. Phase separation and coarsening.","authors":"Ruoyao Zhang, Sheng Mao, Mikko P Haataja","doi":"10.1063/5.0196794","DOIUrl":"https://doi.org/10.1063/5.0196794","url":null,"abstract":"<p><p>In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid-liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaime de la Fuente Diez, Riccardo Spezia, Rodolphe Vuilleumier
{"title":"Spectroscopic properties under vibrational strong coupling in disordered matter from path-integral Monte Carlo simulations.","authors":"Jaime de la Fuente Diez, Riccardo Spezia, Rodolphe Vuilleumier","doi":"10.1063/5.0226938","DOIUrl":"https://doi.org/10.1063/5.0226938","url":null,"abstract":"<p><p>Vibrational strong coupling (VSC), the strong coupling between a Fabry-Perrot cavity and molecular vibrations at mid-infrared frequencies, has received important attention in the last years due to its capacity of modifying both vibrational spectra and chemical reactivity. VSC is a collective effect, and in this work, we introduce Path Integral Monte Carlo (PIMC) simulations that not only take into account the quantum character of the molecular vibrations and of the optical resonance of the cavity but also reproduce this collective behavior by considering multiple replicas of the molecular system. Moreover, we show that it is possible to extract from the PIMC simulations the decomposition of the hybrid optical and molecular states in terms of the bare molecular modes. On a model system of an ensemble of disordered Morse oscillators coupled to a single cavity through the Pauli-Fierz Hamiltonian, PIMC can retrieve known features obtained from analytical modes such as the Tavis-Cummings model and obtain a very close agreement with exact diagonalization for a small number of Morse oscillators. We also find that notwithstanding the anhamonic character of the Morse oscillators, the collective mode coupled to the cavity behaves as a harmonic oscillator, following the quantum central limit theorem.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul Alexander Chantler, Lars Thomsen, Subhayan Roychoudhury, Chris J Glover, Valerie Mitchell, Sarah K M McGregor, Shih-Chun Lo, Ebinazar B Namdas, David Prendergast, Christopher R McNeill
{"title":"NEXAFS spectroscopy of alkylated benzothienobenzothiophene thin films at the carbon and sulfur K-edges.","authors":"Paul Alexander Chantler, Lars Thomsen, Subhayan Roychoudhury, Chris J Glover, Valerie Mitchell, Sarah K M McGregor, Shih-Chun Lo, Ebinazar B Namdas, David Prendergast, Christopher R McNeill","doi":"10.1063/5.0231117","DOIUrl":"https://doi.org/10.1063/5.0231117","url":null,"abstract":"<p><p>Alkylated benzothienobenzothiophenes are an important class of organic semiconductors that exhibit high performance in solution-processed organic field-effect transistors. In this work, we study the near-edge x-ray absorption fine-structure (NEXAFS) spectra of 2,7-didecyl[1]benzothieno[3,2-b][1]benzothiophene (C10-BTBT) at both the carbon and sulfur K-edges. Angle-resolved experiments of thin films are performed to characterize the dichroism associated with molecular orientation. First-principles calculations using the density functional theory-based many-body x-ray absorption spectroscopy (MBXAS) method are also performed to correlate the peaks observed and their dichroism with transitions to specific antibonding molecular orbitals. Interestingly, the dichroism of the dominant, lowest energy peak is opposite at the carbon and sulfur K-edges. While the low-energy peak at the carbon K-edge is assigned to carbon 1s → π* transitions with transition dipole moment (TDM) perpendicular to the planar BTBT core, the dominant low energy peak at the sulfur K-edge is assigned to sulfur 1s → σ* transitions with TDM oriented along the long axis of the BTBT core. These differences at the sulfur and carbon K-edges are understood through the MBAXS simulations that find a reordering of the energy of the lowest energy π* and σ* transitions at the sulfur K-edge due to the strong localization of the σ* orbital over the sulfur atom. This work highlights differences in the NEXAFS spectra of organic semiconductors at carbon and sulfur K-edges and provides new insights into peak assignment and x-ray dichroism relevant for studying the molecular orientation of organic semiconductor films.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jungyoon Kim, Wonil Seo, Jeongmin Park, Ingyeong Kim, Eunji Park, Joonghan Kim
{"title":"Revisiting the global minimum of Au10 clusters.","authors":"Jungyoon Kim, Wonil Seo, Jeongmin Park, Ingyeong Kim, Eunji Park, Joonghan Kim","doi":"10.1063/5.0234144","DOIUrl":"https://doi.org/10.1063/5.0234144","url":null,"abstract":"<p><p>This study employs high-level quantum chemical calculations to determine the global minimum structure of Au10 clusters definitively. Contrary to previous reports, coupled-cluster singles and doubles with perturbative triples [CCSD(T)] calculations with sizable quadruple-ζ basis sets incorporating the spin-orbit (SO) effect reveal that the planar 10.b structure is the true global minimum for Au10, not the three-dimensional 10.a structure. Two-component spin-orbit density functional theory calculations demonstrate that the SO effect is minimal for most Au10 isomers, except for the 10.f structure. A straightforward diagnostic tool is proposed for identifying Au cluster structures with strong spin-orbit coupling based on 6p orbital occupation. The calculated IR spectra based on Boltzmann averaging the six Au10 isomers show good agreement with recent experimental spectra although minor discrepancies are noted potentially due to interactions with Kr. The results suggest that the transition point to non-planar global minimum structures for Au clusters lies beyond Au10 but is nearby.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of cavity strong coupling on single electron transfer reaction rate at electrode-electrolyte interface.","authors":"Takahiro Hayashi, Tomohiro Fukushima, Kei Murakoshi","doi":"10.1063/5.0231477","DOIUrl":"https://doi.org/10.1063/5.0231477","url":null,"abstract":"<p><p>The physicochemical properties of molecules can be modulated through polariton formation under strong electromagnetic confinement. Here, we discuss the possibility of exploiting this phenomenon to increase the electron transfer rate at an electrode-electrolyte interface. Electron transfer theory under strong electromagnetic confinement can be extended to the electrode-electrolyte interface, and single-electron transfer reactions can be simulated using Gerischer's theory. Although single electron transfer in free space is well described using Marcus theory, the vacuum electric field can facilitate an additional electron transfer pathway via virtual photon excitation under cavity strong coupling conditions. Therefore, this binary reaction pathway for single electron transfer can yield a quasi-two-particle electron transfer process. This quantum behavior can dominate when the mode volume is small and when there are a large number of molecules in the vacuum electric field. Exploitation of polaritons in single electron transfer reactions can lead to enhanced electrochemical energy conversion systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesco Verdelli, Yu-Chen Wei, Joost M Scheers, Mohamed S Abdelkhalik, Masoumeh Goudarzi, Jaime Gómez Rivas
{"title":"Ultrastrong coupling between molecular vibrations in water and surface lattice resonances.","authors":"Francesco Verdelli, Yu-Chen Wei, Joost M Scheers, Mohamed S Abdelkhalik, Masoumeh Goudarzi, Jaime Gómez Rivas","doi":"10.1063/5.0231198","DOIUrl":"https://doi.org/10.1063/5.0231198","url":null,"abstract":"<p><p>We investigate the vibrational ultrastrong coupling between molecular vibrations of water molecules and surface lattice resonances (SLRs) sustained by extended arrays of plasmonic microparticles. We design and fabricate an array of gold bowties, which sustain a very high field enhancement, with its SLR resonated with the OH stretching modes of water. We measure a Rabi splitting of 567 cm-1 in the strongly coupled system, whose coupling strength is 8% of the OH vibrational energy, at the onset of the ultrastrong coupling regime (10%). These results introduce metallic microparticle arrays as a platform for the investigation of ultrastrong coupling, which could be used in polaritonic chemistry to modify the dynamics of chemical reactions that require high coupling strengths.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142621028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefan Feusi, Felix Graber, Jai Khatri, Chenxi Li, Ruth Signorell
{"title":"How CO2 gas accelerates water nucleation at low temperature.","authors":"Stefan Feusi, Felix Graber, Jai Khatri, Chenxi Li, Ruth Signorell","doi":"10.1063/5.0233794","DOIUrl":"https://doi.org/10.1063/5.0233794","url":null,"abstract":"<p><p>We conducted homogeneous nucleation experiments for dilute binary H2O-CO2 mixtures in Ar-N2 carrier gas with different CO2/H2O ratios at temperatures of 57 and 75 K and total pressures of ∼40 and 70 Pa, respectively. Direct experimental information on the number and type of molecules in the clusters and on the cluster number concentration is obtained by mass spectrometric detection of nucleating clusters that form in the uniform region of Laval expansions. Only homo-molecular water clusters are observed in the mass spectra. However, as the CO2/H2O ratio increases, a significant increase in the nucleation rate is observed. A simple kinetic model suggests that this acceleration of nucleation is due to the formation of short-lived, transient hetero-molecular H2O-CO2 dimers. Comparison with homogeneous binary nucleation of toluene-CO2 and unary nucleation of H2O shows that nucleation becomes more efficient in systems with stronger intermolecular interactions and a larger number of degrees of freedom. Such studies at the molecular level will improve our understanding of homogeneous nucleation mechanisms in atmospheric and industrial processes.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microstructural characterization of DEM-based random packings of monodisperse and polydisperse non-convex particles.","authors":"Zhihong Ma, Mingkun Jia, Jiaping Liu, Wenxiang Xu","doi":"10.1063/5.0233933","DOIUrl":"https://doi.org/10.1063/5.0233933","url":null,"abstract":"<p><p>Understanding of hard particles in morphologies and sizes on microstructures of particle random packings is of significance to evaluate physical and mechanical properties of many discrete media, such as granular materials, colloids, porous ceramics, active cells, and concrete. The majority of previous lines of research mainly dedicated microstructure analysis of convex particles, such as spheres, ellipsoids, spherocylinders, cylinders, and convex-polyhedra, whereas little is known about non-convex particles that are more close to practical discrete objects in nature. In this study, the non-convex morphology of a three-dimensional particle is devised by using a mathematical-controllable parameterized method, which contains two construction modes, namely, the uniformly distributed contraction centers and the randomly distributed contraction centers. Accordingly, three shape parameters are conceived to regulate the particle geometrical morphology from a perfect sphere to arbitrary non-convexities. Random packing models of hard non-convex particles with mono-/poly-dispersity in sizes are then established using the discrete element modeling Diverse microstructural indicators are utilized to characterize configurations of non-convex particle random packings. The compactness of non-convex particles in packings is characterized by the random close packing fraction fd and the corresponding average coordination number Z. In addition, four statistical descriptors, encompassing the radial distribution function g(r), two-point probability function S2(i)(r), lineal-path function L(i)(r), and cumulative pore size distribution function F(δ), are exploited to demonstrate the high-order microstructure information of non-convex particle random packings. The results demonstrate that the particle shape and size distribution have significant effects on Z and fd; the construction mode of the randomly distributed contraction centers can yield higher fd than that of the uniformly distributed contraction centers, in which the upper limit of fd approaches to 0.632 for monodisperse sphere packings. Moreover, non-convex particles of sizes following the famous Fuller distribution of the power-law distribution of the exponent q = 2.5, have the highest fd (≈0.761) with respect to other q. In contrast, the particle shapes have an almost negligible effect on the four statistical descriptors, but they are remarkably sensitive to particle packing fraction fp and size distribution. The results can provide sound guidance for custom-design of granular media by tailoring specific microstructures of particles.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretically grounded approaches to account for polarization effects in fixed-charge force fields.","authors":"Miguel Jorge","doi":"10.1063/5.0236899","DOIUrl":"https://doi.org/10.1063/5.0236899","url":null,"abstract":"<p><p>Non-polarizable, or fixed-charge, force fields are the workhorses of most molecular simulation studies. They attempt to describe the potential energy surface (PES) of the system by including polarization effects in an implicit way. This has historically been done in a rather empirical and ad hoc manner. Recent theoretical treatments of polarization, however, offer promise for getting the most out of fixed-charge force fields by judicious choice of parameters (most significantly the net charge or dipole moment of the model) and application of post facto polarization corrections. This Perspective describes these polarization theories, namely the \"halfway-charge\" theory and the molecular dynamics in electronic continuum theory, and shows that they lead to qualitatively (and often, quantitatively) similar predictions. Moreover, they can be reconciled into a unified approach to construct a force field development workflow that can yield non-polarizable models with charge/dipole values that provide an optimal description of the PES. Several applications of this approach are reviewed, and avenues for future research are proposed.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 18","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia S G Ferreira, Marcos S Sousa, Florian S Günther, Paulo B Miranda
{"title":"On the mechanism for work function change of gold electrodes by ultrathin polyethyleneimine (PEI) films: Effect of molecular order.","authors":"Claudia S G Ferreira, Marcos S Sousa, Florian S Günther, Paulo B Miranda","doi":"10.1063/5.0234654","DOIUrl":"https://doi.org/10.1063/5.0234654","url":null,"abstract":"<p><p>Polyethyleneimine (PEI) is a widely used cationic polyelectrolyte. In organic electronics, it is a universal surface modifier for shifting the electrode work function (Φ) and improving charge injection into electronic devices. This effect may depend on the conformation and dipolar order of the PEI ultrathin film, but their detailed experimental evaluation has not yet been reported. Thus, we used sum-frequency generation (SFG) spectroscopy to probe the net orientation of polar groups of PEI films on glass and gold. The films were fabricated by spin-coating from alcoholic solutions or by dip-coating from aqueous solutions of various pH values, with both branched (b-PEI) and linear (l-PEI) structures. The obtained SFG spectra and atomic force microscopy (AFM) images indicated that the conformational ordering of the PEI layers increases over the period of 14 days after fabrication, being slightly more pronounced for l-PEI vs b-PEI, and for dip-coating vs spin coating fabrication. Furthermore, both the pH of the dip-coating solutions and the substrate nature influence the final morphology and order of the adsorbed films. On glass, they are optimized at an intermediate pH 5, while on gold, the greatest homogeneity is observed at pH 2 and the largest dipolar order is observed at pH 10. The pH dependence of changes in the work function of gold by PEI (|ΔΦ|) suggests that the electronic contribution is dominant. Nevertheless, the evolution of the PEI dipolar ordering was accompanied by small variations of |ΔΦ|, suggesting that it does have a significant contribution, especially at conditions for which the electronic contribution is reduced.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 17","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}