利用吉布斯自调谐将局部步长自适应纳入无u型转弯采样器。

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Nawaf Bou-Rabee, Bob Carpenter, Tore Selland Kleppe, Milo Marsden
{"title":"利用吉布斯自调谐将局部步长自适应纳入无u型转弯采样器。","authors":"Nawaf Bou-Rabee, Bob Carpenter, Tore Selland Kleppe, Milo Marsden","doi":"10.1063/5.0280793","DOIUrl":null,"url":null,"abstract":"<p><p>Adapting the step size locally in the no-U-turn sampler (NUTS) is challenging because the step-size and path-length tuning parameters are interdependent. The determination of an optimal path length requires a predefined step size, while the ideal step size must account for errors along the selected path. Ensuring reversibility further complicates this tuning problem. In this paper, we present a method for locally adapting the step size in NUTS that is an instance of the Gibbs self-tuning (GIST) framework. Our approach guarantees reversibility with an acceptance probability that depends exclusively on the conditional distribution of the step size. We validate our step-size-adaptive NUTS method on Neal's funnel density and a high-dimensional normal distribution, demonstrating its effectiveness in challenging scenarios.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating local step-size adaptivity into the no-U-turn sampler using Gibbs self-tuning.\",\"authors\":\"Nawaf Bou-Rabee, Bob Carpenter, Tore Selland Kleppe, Milo Marsden\",\"doi\":\"10.1063/5.0280793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adapting the step size locally in the no-U-turn sampler (NUTS) is challenging because the step-size and path-length tuning parameters are interdependent. The determination of an optimal path length requires a predefined step size, while the ideal step size must account for errors along the selected path. Ensuring reversibility further complicates this tuning problem. In this paper, we present a method for locally adapting the step size in NUTS that is an instance of the Gibbs self-tuning (GIST) framework. Our approach guarantees reversibility with an acceptance probability that depends exclusively on the conditional distribution of the step size. We validate our step-size-adaptive NUTS method on Neal's funnel density and a high-dimensional normal distribution, demonstrating its effectiveness in challenging scenarios.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":\"163 8\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0280793\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0280793","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于步长和路径长度调整参数是相互依赖的,因此在无u型转弯采样器(NUTS)中局部调整步长是具有挑战性的。确定最优路径长度需要预定义的步长,而理想步长必须考虑在所选路径上的误差。确保可逆性使这个调优问题进一步复杂化。在本文中,我们提出了一种在NUTS中局部调整步长的方法,这是Gibbs自调优(GIST)框架的一个实例。我们的方法以完全依赖于步长条件分布的可接受概率保证可逆性。我们在Neal的漏斗密度和高维正态分布上验证了我们的步长自适应NUTS方法,证明了它在具有挑战性的场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating local step-size adaptivity into the no-U-turn sampler using Gibbs self-tuning.

Adapting the step size locally in the no-U-turn sampler (NUTS) is challenging because the step-size and path-length tuning parameters are interdependent. The determination of an optimal path length requires a predefined step size, while the ideal step size must account for errors along the selected path. Ensuring reversibility further complicates this tuning problem. In this paper, we present a method for locally adapting the step size in NUTS that is an instance of the Gibbs self-tuning (GIST) framework. Our approach guarantees reversibility with an acceptance probability that depends exclusively on the conditional distribution of the step size. We validate our step-size-adaptive NUTS method on Neal's funnel density and a high-dimensional normal distribution, demonstrating its effectiveness in challenging scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信