{"title":"Double Mpemba effect in the cooling of trapped colloids.","authors":"Isha Malhotra, Hartmut Löwen","doi":"10.1063/5.0225749","DOIUrl":"10.1063/5.0225749","url":null,"abstract":"<p><p>The Mpemba effect describes the phenomenon that a system at hot initial temperature cools faster than at an initial warm temperature in the same environment. Such an anomalous cooling has recently been predicted and realized for trapped colloids. Here, we investigate the freezing behavior of a passive colloidal particle by employing numerical Brownian dynamics simulations and theoretical calculations with a model that can be directly tested in experiments. During the cooling process, the colloidal particle exhibits multiple non-monotonic regimes in cooling rates, with the cooling time decreasing twice as a function of the initial temperature-an unexpected phenomenon we refer to as the Double Mpemba effect. In addition, we demonstrate that both the Mpemba and Double Mpemba effects can be predicted by various machine-learning methods, which expedite the analysis of complex, computationally intensive systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of hydride anion and acetyloxyl radical production by electron attachment to acetic acid.","authors":"M Hasan, Th Weber, M Centurion, D S Slaughter","doi":"10.1063/5.0226252","DOIUrl":"10.1063/5.0226252","url":null,"abstract":"<p><p>We investigate the dynamics and site-selectivity in the dissociation of transient anions formed upon attachment of low energy electrons to acetic acid by anion fragment momentum imaging experiments. The resonances at 6.7 and 7.7 eV are confirmed to dissociate exclusively by the O-H bond, while a third resonance at 9.1 eV dissociates primarily by both C-H break and O-H break. A fourth resonance near 10 eV is found to dissociate by O-H break. For each resonance, the measured kinetic energy release indicates two-body dissociation produces a neutral radical in the ground electronic state, for all four resonances. The measured angular distributions are consistent with all four resonances having A' symmetry.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of load-resisting force on photoisomerization mechanism of a single second generation light-driven molecular rotary motor.","authors":"Xiaojuan Pang, Kaiyue Zhao, Deping Hu, Quanjie Zhong, Ningbo Zhang, Chenwei Jiang","doi":"10.1063/5.0216074","DOIUrl":"10.1063/5.0216074","url":null,"abstract":"<p><p>A pivotal aspect of molecular motors is their capability to generate load capacity from a single entity. However, few studies have directly characterized the load-resisting force of a single light-driven molecular motor. This research provides a simulation analysis of the load-resisting force for a highly efficient, second-generation molecular motor developed by Feringa et al. We investigate the M-to-P photoinduced nonadiabatic molecular dynamics of 9-(2,3-dihydro-2-methyl-1H-benz[e]inden-1-ylidene)-9H-fluorene utilizing Tully's surface hopping method at the semi-empirical OM2/MRCI level under varying load-resisting forces. The findings indicate that the quantum yield remains relatively stable under forces up to 0.003 a.u., with the photoisomerization mechanism functioning typically. Beyond this threshold, the quantum yield declines, and an alternative photoisomerization mechanism emerges, characterized by an inversion of the central double bond's twisting direction. The photoisomerization process stalls when the force attains a critical value of 0.012 a.u. Moreover, the average lifetime of the excited state oscillates around that of the unperturbed system. The quantum yield and mean lifetime of the S1 excited state in the absence of external force are recorded at 0.54 and 877.9 fs, respectively. In addition, we analyze a time-dependent fluorescence radiation spectrum, confirming the presence of a dark state and significant vibrations, as previously observed experimentally by Conyard et al.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinícius M de Oliveira, Caique C Malospirito, Fernando B da Silva, Natália B Videira, Marieli M G Dias, Murilo N Sanches, Vitor B P Leite, Ana Carolina M Figueira
{"title":"Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants.","authors":"Vinícius M de Oliveira, Caique C Malospirito, Fernando B da Silva, Natália B Videira, Marieli M G Dias, Murilo N Sanches, Vitor B P Leite, Ana Carolina M Figueira","doi":"10.1063/5.0232041","DOIUrl":"10.1063/5.0232041","url":null,"abstract":"<p><p>The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luke Guerrieri, Sarah Hall, Brad M Luther, Amber T Krummel
{"title":"Signatures of coherent vibrational dynamics in ethylene carbonate.","authors":"Luke Guerrieri, Sarah Hall, Brad M Luther, Amber T Krummel","doi":"10.1063/5.0216515","DOIUrl":"10.1063/5.0216515","url":null,"abstract":"<p><p>Despite having practical applications in battery technology and serving as a model system for Fermi resonance coupling, ethylene carbonate (EC) receives little direct attention as a vibrational probe in nonlinear vibrational spectroscopy experiments. EC contains a Fermi resonance that is well-characterized in the linear spectrum, and the environmental sensitivity of its Fermi resonance peaks could make it a good molecular probe for two-dimensional infrared spectroscopy (2DIR) experiments. As a model system, we investigate the linear and 2DIR vibrational spectrum of the carbonyl stretching region of ethylene carbonate in tetrahydrofuran. The 2DIR spectrum reveals peak dynamics that evolve coherently. We characterize these dynamics in the context of Redfield theory and find evidence that EC dynamics proceed through coherent pathways, including singular coherence transfer pathways that have not been widely observed in other studies. We find that coherent contributions play a significant role in the observed dynamics of cross-peaks in the 2DIR spectrum, which must be accounted for to extract accurate measurements of early waiting time dynamics.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling of fluence-dependent hole-burned spectra and hole-growth kinetics using multiple two-level system model.","authors":"Tonu Reinot, Ryszard Jankowiak","doi":"10.1063/5.0222998","DOIUrl":"https://doi.org/10.1063/5.0222998","url":null,"abstract":"<p><p>Numerical formalism is presented that perfectly describes resonant low-temperature hole-burned spectra (including zero-phonon holes, ZPHs) and spectral hole-growth dynamics of Al-phthalocyanine tetrasulphonate embedded in hyperquenched glassy water films over more than seven orders of fluence magnitude (0.4 µJ/cm2-5.9 J/cm2). Frequency changes during spectral hole-burning (HB) are traditionally explained with the help of a single extrinsic two-level-system (TLSext) associated with impurity molecules. The new multiple two-level system (n-TLSext) models and data analysis presented in this work show that each chromophore in an amorphous medium can couple with multiple independent TLSext, which maintain perfect photo-memory, allowing a full return of the photoproduct to the initial (\"preburn\") state. Modeling reveals that the experimentally observed narrow photoproduct peak at higher energies, in close vicinity of the zero-phonon hole (ZPH), reflects a dynamical feature of the HB process populating so-called \"terminal\" states (states that do not interact with laser excitation). Within the n-TLSext model, each chromophore possesses multiple possibilities to create a photoproduct when in interaction with the burning laser, i.e., chromophores can interact with burning laser-light multiple times until reaching the terminal states. Due to phonon-assisted absorption, terminal states are typically at higher energies than the ZPH, in agreement with the hole burned spectra reported for many molecules embedded in various amorphous solids. However, many HB systems reveal both blue- (high-energy) and red-shifted (low-energy) antiholes (i.e., photoproducts). We suggest that future modeling of resonant holes in various proteins using our n-TLSext model will provide more insight on the complexity of the protein energy landscape.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelkerim Hassan Hamid, David Gonzalez-Rodriguez, Hong Xu, Lydiane Bécu
{"title":"Dynamics of paramagnetic permanent chains and self-assembled clusters under a rapidly rotating magnetic field.","authors":"Abdelkerim Hassan Hamid, David Gonzalez-Rodriguez, Hong Xu, Lydiane Bécu","doi":"10.1063/5.0223442","DOIUrl":"https://doi.org/10.1063/5.0223442","url":null,"abstract":"<p><p>We study experimentally and theoretically the dynamics of permanent paramagnetic chains and mixed clusters formed by permanent paramagnetic chains and paramagnetic particles under the influence of a time-varying magnetic field. First, we examine the dynamics of permanent chains at high frequencies (∼50 to 1000 Hz). These permanent chains exhibit continuous rotational motion with a frequency several orders of magnitude lower than that of the magnetic field. We develop a theoretical model that accurately describes the dependence of the rotational dynamics of chains on their length, as well as the amplitude and frequency of the external magnetic field in this high frequency regime. Next, we examine how cluster dynamics are affected by the presence of permanent chains. We show that the rotation of clusters composed of a high proportion of permanent chains is slowed down but remains qualitatively well described by the theoretical model we developed for homogeneous clusters of isotropic particles. We propose that the decrease in angular velocity for mixed clusters is due to the hardening of the cluster's 2D elastic modulus caused by the increase of the steric interaction parameter stemming from the presence of chemical links between particles in the chains.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Tamin, S Houamer, T Khatir, L U Ancarani, C Dal Cappello
{"title":"Electron-impact ionization of water molecules at low impact energies.","authors":"A Tamin, S Houamer, T Khatir, L U Ancarani, C Dal Cappello","doi":"10.1063/5.0225885","DOIUrl":"10.1063/5.0225885","url":null,"abstract":"<p><p>The electron-impact ionization of water molecules at low impact energies is investigated using a theoretical approach named M3CWZ. In this model, which considers exchange effects and post-collision interaction, the continuum electrons (incident, scattered, and ejected) are all described by a Coulomb wave that corresponds to distance-dependent charges generated from the molecular target properties. Triple differential cross-sections for low impact energy ionization of either the 1b1 or 3a1 orbitals are calculated for several geometrical and kinematical configurations, all in the dipole regime. The M3CWZ model is thoroughly tested with an extensive comparison with available theoretical results and COLTRIMS measurements performed at projectile energies of Ei = 81 eV [Ren et al., Phys. Rev. A 95, 022701 (2017)] and Ei = 65 eV [Zhou et al., Phys. Rev. A 104, 012817 (2021)]. Similar to other theoretical models, an overall good agreement with both sets of measured data is observed for the angular distributions. Our calculated cross-sections' magnitudes are also satisfactory when compared to the other theoretical results, as well as to the cross-normalized relative scale data at 81 eV impact energy. The 65 eV set of data, measured on an absolute scale, offers a further challenging task for theoretical descriptions, and globally the M3CWZ performs fairly well and comparably to other theories. The proposed approach with variable charges somehow allows to capture the main multicenter distortion effects while avoiding high computational costs.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular dynamics insights into the dynamical behavior of structurally modified water in aqueous deep eutectic solvents (ADES).","authors":"Arnab Sil, Sangeeta, Vishnu Poonia, Suman Das, Biswajit Guchhait","doi":"10.1063/5.0223828","DOIUrl":"10.1063/5.0223828","url":null,"abstract":"<p><p>Recent studies have demonstrated that the presence of water in deep eutectic solvents (DESs) significantly affects their dynamics, structure, and physical properties. Although the structural changes due to the addition of water are well understood, the microscopic dynamics of these changes have been rarely studied. Here, we performed molecular dynamics simulation of 30% (v/v) (∼0.57 molar fraction) water mixture of DES containing CH3CONH2 and NaSCN/KSCN at various salt fractions to understand the microscopic structure and dynamics of water. The simulated results reveal a heterogeneous environment for water molecules in aqueous DES (ADES), which is influenced by the nature of the cation. The diffusion coefficients of water in ADESs are significantly lower than that in neat water and concentrated aqueous NaSCN/KSCN solution. When Na+ ions are replaced by K+ ions in the ADES system, the diffusion coefficient increases, which is consistent with the measured nuclear magnetic resonance data. Self-dynamic structure factor for water and other simulated dynamic quantities, such as reorientation, hydrogen-bond, and residence time correlation functions, show markedly slower dynamics inside ADES than in the neat water and aqueous salt solution. Moreover, these dynamics become faster when Na+ ions in ADES are replaced by K+ ions. The results suggest that the structural environment of water in Na+-rich ADES is rigid due to the presence of cation-bound water and geometrically constrained water. The medium becomes less rigid as the KSCN fraction increases due to the relatively weaker interaction of K+ ions with water than Na+ ions, which accelerates the dynamical processes.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Huang, Shih-Han Wang, Luke E K Achenie, Kamal Choudhary, Hongliang Xin
{"title":"Origin of unique electronic structures of single-atom alloys unraveled by interpretable deep learning.","authors":"Yang Huang, Shih-Han Wang, Luke E K Achenie, Kamal Choudhary, Hongliang Xin","doi":"10.1063/5.0232141","DOIUrl":"10.1063/5.0232141","url":null,"abstract":"<p><p>We uncover the origin of unique electronic structures of single-atom alloys (SAAs) by interpretable deep learning. The approach integrates tight-binding moment theory with graph neural networks to accurately describe the local electronic structure of transition and noble metal sites upon perturbation. We emphasize the complex interplay of interatomic orbital coupling and on-site orbital resonance, which shapes the d-band characteristics of an active site, shedding light on the origin of free-atom-like d-states that are often observed in SAAs involving d10 metal hosts. This theory-infused neural network approach significantly enhances our understanding of the electronic properties of single-site catalytic materials beyond traditional theories.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}