Journal of breath research最新文献

筛选
英文 中文
Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source. 从肺癌患者和易感烟草消费者呼出的冷凝液和痰中提取外泌体并确定其特征--潜在的无创诊断生物标记源。
IF 3.7 4区 医学
Journal of breath research Pub Date : 2024-07-11 DOI: 10.1088/1752-7163/ad5eae
Afsareen Bano, Pooja Yadav, Megha Sharma, Deepika Verma, Ravina Vats, Dhruva Chaudhry, Pawan Kumar, Rashmi Bhardwaj
{"title":"Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source.","authors":"Afsareen Bano, Pooja Yadav, Megha Sharma, Deepika Verma, Ravina Vats, Dhruva Chaudhry, Pawan Kumar, Rashmi Bhardwaj","doi":"10.1088/1752-7163/ad5eae","DOIUrl":"10.1088/1752-7163/ad5eae","url":null,"abstract":"<p><p>Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (<i>n</i>= 30), tobacco smokers (<i>n</i>= 30), and lung cancer patients (<i>n</i>= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (<i>p</i> < 0.05) and sputum (<i>p</i>= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (<i>p</i> < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"18 4","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exhaled breath analysis for the discrimination of asthma and chronic obstructive pulmonary disease. 用于鉴别哮喘和慢性阻塞性肺病的呼气分析。
IF 3.7 4区 医学
Journal of breath research Pub Date : 2024-07-10 DOI: 10.1088/1752-7163/ad53f8
Lan Li, Haibin Chen, Jinying Shi, Shukun Chai, Li Yan, Deyang Meng, Zhigang Cai, Jitao Guan, Yunwei Xin, Xu Zhang, Wuzhuang Sun, Xi Lu, Mengqi He, Qingyun Li, Xixin Yan
{"title":"Exhaled breath analysis for the discrimination of asthma and chronic obstructive pulmonary disease.","authors":"Lan Li, Haibin Chen, Jinying Shi, Shukun Chai, Li Yan, Deyang Meng, Zhigang Cai, Jitao Guan, Yunwei Xin, Xu Zhang, Wuzhuang Sun, Xi Lu, Mengqi He, Qingyun Li, Xixin Yan","doi":"10.1088/1752-7163/ad53f8","DOIUrl":"10.1088/1752-7163/ad53f8","url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) and asthma are the most common chronic respiratory diseases. In middle-aged and elderly patients, it is difficult to distinguish between COPD and asthma based on clinical symptoms and pulmonary function examinations in clinical practice. Thus, an accurate and reliable inspection method is required. In this study, we aimed to identify breath biomarkers and evaluate the accuracy of breathomics-based methods for discriminating between COPD and asthma. In this multi-center cross-sectional study, exhaled breath samples were collected from 89 patients with COPD and 73 with asthma and detected on a high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) platform from 20 October 2022, to 20 May 2023, in four hospitals. Data analysis was performed from 15 June 2023 to 16 August 2023. The sensitivity, specificity, and accuracy were calculated to assess the overall performance of the volatile organic component (VOC)-based COPD and asthma discrimination models. Potential VOC markers related to COPD and asthma were also analyzed. The age of all participants ranged from to 18-86 years, and 54 (33.3%) were men. The age [median (minimum, maximum)] of COPD and asthma participants were 66.0 (46.0, 86.0), and 44.0 (17.0, 80.0). The male and female ratio of COPD and asthma participants were 14/75 and 40/33, respectively. Based on breathomics feature selection, ten VOCs were identified as COPD and asthma discrimination biomarkers via breath testing. The joint panel of these ten VOCs achieved an area under the curve of 0.843, sensitivity of 75.9%, specificity of 87.5%, and accuracy of 80.0% in COPD and asthma discrimination. Furthermore, the VOCs detected in the breath samples were closely related to the clinical characteristics of COPD and asthma. The VOC-based COPD and asthma discrimination model showed good accuracy, providing a new strategy for clinical diagnosis. Breathomics-based methods may play an important role in the diagnosis of COPD and asthma.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141247334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking breath analysis using peppermint approach with gas chromatography ion mobility spectrometer coupled to micro thermal desorber. 利用气相色谱离子迁移谱仪和微型热脱附仪,采用薄荷方法对呼气进行基准分析。
IF 3.7 4区 医学
Journal of breath research Pub Date : 2024-07-04 DOI: 10.1088/1752-7163/ad5863
Dorota M Ruszkiewicz, Kristian J Kiland, Yoonseo Mok, Crista Bartolomeu, Scott A Borden, Paul Thomas, Stephen Lam, Renelle Myers
{"title":"Benchmarking breath analysis using peppermint approach with gas chromatography ion mobility spectrometer coupled to micro thermal desorber.","authors":"Dorota M Ruszkiewicz, Kristian J Kiland, Yoonseo Mok, Crista Bartolomeu, Scott A Borden, Paul Thomas, Stephen Lam, Renelle Myers","doi":"10.1088/1752-7163/ad5863","DOIUrl":"10.1088/1752-7163/ad5863","url":null,"abstract":"<p><p>The Peppermint Initiative, established within the International Association of Breath Research, introduced the peppermint protocol, a breath analysis benchmarking effort designed to address the lack of inter-comparability of outcomes across different breath sampling techniques and analytical platforms. Benchmarking with gas chromatography-ion mobility spectrometry (GC-IMS) using peppermint has been previously reported however, coupling micro-thermal desorption (<i>µ</i>TD) to GC-IMS has not yet, been benchmarked for breath analysis. To benchmark<i>µ</i>TD-GC-IMS for breath analysis using the peppermint protocol. Ten healthy participants (4 males and 6 females, aged 20-73 years), were enrolled to give six breath samples into Nalophan bags via a modified peppermint protocol. Breath sampling after peppermint ingestion occurred over 6 h at<i>t</i>= 60, 120, 200, 280, and 360 min. The breath samples (120 cm<sup>3</sup>) were pre-concentrated in the<i>µ</i>TD before being transferred into the GC-IMS for detection. Data was processed using VOCal, including background subtractions, peak volume measurements, and room air assessment. During peppermint washout, eucalyptol showed the highest change in concentration levels, followed by<i>α</i>-pinene and<i>β</i>-pinene. The reproducibility of the technique for breath analysis was demonstrated by constructing logarithmic washout curves, with the average linearity coefficient of<i>R</i><sup>2</sup>= 0.99. The time to baseline (benchmark) value for the eucalyptol washout was 1111 min (95% CI: 529-1693 min), obtained by extrapolating the average logarithmic washout curve. The study demonstrated that<i>µ</i>TD-GC-IMS is reproducible and suitable technique for breath analysis, with benchmark values for eucalyptol comparable to the gold standard GC-MS.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electronic nose based analysis of exhaled volatile organic compounds spectrum reveals asthmatic shifts and consistency in controls post-exercise and spirometry. 基于电子鼻的呼出挥发性有机化合物频谱分析揭示了哮喘的转变以及运动后和肺活量测定对照组的一致性。
IF 3.7 4区 医学
Journal of breath research Pub Date : 2024-06-26 DOI: 10.1088/1752-7163/ad5864
Silvano Dragonieri, Marcin Di Marco, Madiha Ahroud, Vitaliano Nicola Quaranta, Andrea Portacci, Ilaria Iorillo, Francesca Montagnolo, Giovanna Elisiana Carpagnano
{"title":"Electronic nose based analysis of exhaled volatile organic compounds spectrum reveals asthmatic shifts and consistency in controls post-exercise and spirometry.","authors":"Silvano Dragonieri, Marcin Di Marco, Madiha Ahroud, Vitaliano Nicola Quaranta, Andrea Portacci, Ilaria Iorillo, Francesca Montagnolo, Giovanna Elisiana Carpagnano","doi":"10.1088/1752-7163/ad5864","DOIUrl":"10.1088/1752-7163/ad5864","url":null,"abstract":"<p><p>Analyzing exhaled volatile organic compounds (VOCs) with an electronic nose (e-nose) is emerging in medical diagnostics as a non-invasive, quick, and sensitive method for disease detection and monitoring. This study investigates if activities like spirometry or physical exercise affect exhaled VOCs measurements in asthmatics and healthy individuals, a crucial step for e-nose technology's validation for clinical use. The study analyzed exhaled VOCs using an e-nose in 27 healthy individuals and 27 patients with stable asthma, before and after performing spirometry and climbing five flights of stairs. Breath samples were collected using a validated technique and analyzed with a Cyranose 320 e-nose. In healthy controls, the exhaled VOCs spectrum remained unchanged after both lung function test and exercise. In asthmatics, principal component analysis and subsequent discriminant analysis revealed significant differences post-spirometry (vs. baseline 66.7% cross validated accuracy [CVA],<i>p</i>< 0.05) and exercise (vs. baseline 70.4% CVA,<i>p</i>< 0.05). E-nose measurements in healthy individuals are consistent, unaffected by spirometry or physical exercise. However, in asthma patients, significant changes in exhaled VOCs were detected post-activities, indicating airway responses likely due to constriction or inflammation, underscoring the e-nose's potential for respiratory condition diagnosis and monitoring.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reference equations for exhaled nitric oxide-what is needed? 呼出一氧化氮参考方程--需要什么?
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-06-14 DOI: 10.1088/1752-7163/ad4aba
Marieann Högman
{"title":"Reference equations for exhaled nitric oxide-what is needed?","authors":"Marieann Högman","doi":"10.1088/1752-7163/ad4aba","DOIUrl":"10.1088/1752-7163/ad4aba","url":null,"abstract":"<p><p>Standardisation is the road to improvement! If we all measure exhaled nitric oxide (NO) the same way, we will be successful in having data to make reference questions. Many research groups have published their reference equation, but most differ considerably. About 25 years ago, using the flow of 50 ml s<sup>-1</sup>was recommended and not using a nose clip. When collecting data worldwide, we still see publications that do not indicate what flow was used and that nose clip was utilised. Three things are needed: the analysing method, a flow recording and a filled-in nitric oxide questionnaire. The analysing method is because the techniques have different sensitivity, response times and calibration. The flow of 50 ml s<sup>-1</sup>is on the steep part of the NO output curve; therefore, we need to record the flow to analyse repeated measurements or compare results. The NO questionnaire controls individual factors that may influence the NO measurements, i.e. food intake, smoking and upper airway infection. An important tool in following old and new disease treatments, at home or in health care, is exhaled biomarkers. If we follow the standardisation we have agreed upon, we will be able to have data to say what a high or a low exhaled NO value is.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dental restorative materials and halitosis: a preliminaryin-vitrostudy. 牙科修复材料与口臭:体外初步研究
IF 3.7 4区 医学
Journal of breath research Pub Date : 2024-05-23 DOI: 10.1088/1752-7163/ad4b57
Tuğçe Odabaş, Osman Tolga Harorlı
{"title":"Dental restorative materials and halitosis: a preliminary<i>in-vitro</i>study.","authors":"Tuğçe Odabaş, Osman Tolga Harorlı","doi":"10.1088/1752-7163/ad4b57","DOIUrl":"10.1088/1752-7163/ad4b57","url":null,"abstract":"<p><p>Despite the widespread use of dental restorative materials, little information exists in the literature regarding their potential impact on bad breath. This in vitro study aims to fill this gap by investigating the influence of different restorative materials on the release of hydrogen sulfide (H<sub>2</sub>S). Thirteen diverse dental restorative materials, including composites, flowable composites, glass ionomer restorative materials, high-copper amalgam, and CAD-CAM blocks, were examined. Cellulose Sponge models were used as negative and positive control. All samples were prepared with a diameter of 5 mm and a height of 2 mm. Except for the negative control group, all samples were embedded into Allium cepa L., and the emitted H<sub>2</sub>S was measured using the Wintact W8802 hydrogen sulfide monitor. Surface roughness's effect on emission was explored by roughening the surfaces of CAD-CAM material samples, and gas emission was measured again. The data were statistically analyzed using the Kruskal-Wallis test and DSCF pairwise comparison tests. Fiber-reinforced flowable composite (EverX Flow), amalgam (Nova 70-caps), and certain composite materials (IPS Empress Direct, Tetric Evoceram, Admira Fusion X-tra) released higher H<sub>2</sub>S concentrations compared to the negative control. The H<sub>2</sub>S release period lasted longer in the same materials mentioned above, along with G-aenial Universal Injectable. Indirectly used materials, such as GC Cerasmart, Vita Enamic, and Vita YZ HT, demonstrated significantly lower emissions compared to other direct restoratives. Importantly, the surface roughness of indirect materials did not significantly affect peak H<sub>2</sub>S concentrations or release times. The study reveals variations in H<sub>2</sub>S release among restorative materials, suggesting potential advantages of indirect restorative materials in reducing H<sub>2</sub>S-induced halitosis. This comprehensive understanding of the relationship between restorative materials and halitosis can empower both dental professionals and patients to make well-informed treatment choices. Notably, there is evidence supporting the enhanced performance of indirect restorative materials for individuals affected by halitosis.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS). 使用气相色谱-离子迁移谱法(GC-IMS)评估呼气样本收集方法和在 Tedlar 袋中储存呼气样本的时间对选定挥发性物质含量的影响。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-05-17 DOI: 10.1088/1752-7163/ad4736
Barbora Czippelová, Slavomíra Nováková, Miroslava Šarlinová, Eva Baranovičová, Anna Urbanová, Zuzana Turianiková, Jana Čerňanová Krohová, Erika Halašová, Henrieta Škovierová
{"title":"Impact of breath sample collection method and length of storage of breath samples in Tedlar bags on the level of selected volatiles assessed using gas chromatography-ion mobility spectrometry (GC-IMS).","authors":"Barbora Czippelová, Slavomíra Nováková, Miroslava Šarlinová, Eva Baranovičová, Anna Urbanová, Zuzana Turianiková, Jana Čerňanová Krohová, Erika Halašová, Henrieta Škovierová","doi":"10.1088/1752-7163/ad4736","DOIUrl":"10.1088/1752-7163/ad4736","url":null,"abstract":"<p><p>The analysis of volatile organic compounds (VOCs) in exhaled air has attracted the interest of the scientific community because it provides the possibility of monitoring physiological and metabolic processes and non-invasive diagnostics of various diseases. However, this method remains underused in clinical practice as well as in research because of the lack of standardized procedures for the collection, storage and transport of breath samples, which would guarantee good reproducibility and comparability of results. The method of sampling, as well as the storage time of the breath samples in the polymer bags used for sample storage and transport, affect the composition and concentration of VOCs present in the breath samples. The aim of our study was to compare breath samples obtained using two methods with fully disposable equipment: a Haldane sampling tube intended for direct breath collection and breath samples exhaled into a transparent Tedlar bag. The second task was to monitor the stability of selected compounds of real breath samples stored in a Tedlar bag for 6 h. Gas chromatography coupled with ion mobility spectrometry (GC-IMS) implemented in the BreathSpec<sup>®</sup>device was used to analyse exhaled breath. Our results showed a significant difference in the signal intensity of some volatiles when taking a breath sample with a Haldane tube and a Tedlar bag. Due to its endogenous origin, acetone levels were significantly higher when the Haldane tube sampler was used while elevated levels of 2-propanol and unidentified VOC (designated as VOC 3) in the Tedlar bag samples likely originated from contamination of the Tedlar bags. The VOC stability study revealed compound-specific signal intensity changes of the selected VOCs with storage time in the Tedlar bags, with some volatiles showing increasing signal intensity during storage in Tedlar bags. This limits the use of Tedlar bags only for very limited time and carefully selected purpose. Our results highlight the importance of careful design and implementation of experiments and clinical protocols to obtain relevant and reliable results.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exhaled breath analysis in patients with potentially curative lung cancer undergoing surgery: a longitudinal study. 可能治愈的肺癌手术患者的呼气分析:一项纵向研究。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-05-17 DOI: 10.1088/1752-7163/ad48a9
Jonas Herth, Felix Schmidt, Sarah Basler, Noriane A Sievi, Malcolm Kohler
{"title":"Exhaled breath analysis in patients with potentially curative lung cancer undergoing surgery: a longitudinal study.","authors":"Jonas Herth, Felix Schmidt, Sarah Basler, Noriane A Sievi, Malcolm Kohler","doi":"10.1088/1752-7163/ad48a9","DOIUrl":"10.1088/1752-7163/ad48a9","url":null,"abstract":"<p><p>Exhaled breath analysis has emerged as a non-invasive and promising method for early detection of lung cancer, offering a novel approach for diagnosis through the identification of specific biomarkers present in a patient's breath. For this longitudinal study, 29 treatment-naive patients with lung cancer were evaluated before and after surgery. Secondary electrospray ionization high-resolution mass spectrometry was used for exhaled breath analysis. Volatile organic compounds with absolute log<sup>2</sup>fold change ⩾1 and<i>q</i>-values ⩾ 0.71 were selected as potentially relevant. Exhaled breath analysis resulted in a total of 3482 features. 515 features showed a substantial difference before and after surgery. The small sample size generated a false positive rate of 0.71, therefore, around 154 of these 515 features were expected to be true changes. Biological identification of the features with the highest consistency (<i>m</i>/<i>z</i>-242.18428 and<i>m</i>/<i>z</i>-117.0539) revealed to potentially be 3-Oxotetradecanoic acid and Indole, respectively. Principal component analysis revealed a primary cluster of patients with a recurrent lung cancer, which remained undetected in the initial diagnostic and surgical procedures. The change of exhaled breath patterns after surgery in lung cancer emphasizes the potential for lung cancer screening and detection.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of volatile organic compounds sampling from dairy cow exhaled breath using polymer-based solid-phase extraction cartridges for gas chromatographic analysis. 使用聚合物固相萃取盒优化奶牛呼出气体中挥发性有机化合物的采样,以便进行气相色谱分析。
IF 3.8 4区 医学
Journal of breath research Pub Date : 2024-04-16 DOI: 10.1088/1752-7163/ad38d5
Julia Eichinger, Anna-Maria Reiche, Frigga Dohme-Meier, Pascal Fuchsmann
{"title":"Optimization of volatile organic compounds sampling from dairy cow exhaled breath using polymer-based solid-phase extraction cartridges for gas chromatographic analysis.","authors":"Julia Eichinger, Anna-Maria Reiche, Frigga Dohme-Meier, Pascal Fuchsmann","doi":"10.1088/1752-7163/ad38d5","DOIUrl":"10.1088/1752-7163/ad38d5","url":null,"abstract":"<p><p>We explored appropriate technical setups for the detection of volatile organic compounds (VOCs) from exhaled cow breath by comparing six different polymer-based solid-phase extraction (SPE) cartridges currently on the market for gas chromatography/mass spectrometry (GC-MS) screening. Exhaled breath was sampled at a single timepoint from five lactating dairy cows using six different SPE cartridges (Bond Elut ENV (ENV); Chromabond HRX (HRX); Chromabond HRP (HRP); Chromabond HLB (HLB); Chromabond HR-XCW (XCW) and Chromabond HR-XAW (XAW)). The trapped VOCs were analyzed by dynamic headspace vacuum in-tube extraction GC-MS (DHS-V-ITEX-GC-MS). Depending on the SPE cartridge, we detected 1174-1312 VOCs per cartridge. Most VOCs were alkenes, alkanes, esters, ketones, alcohols, aldehydes, amines, nitriles, ethers, amides, carboxylic acids, alkynes, azoles, terpenes, pyridines, or sulfur-containing compounds. The six SPE cartridges differed in their specificity for the chemical compounds, with the XAW cartridge showing the best specificity for ketones. The greatest differences between the tested SPE cartridges appeared in the detection of specific VOCs. In total, 176 different VOCs were detected with a match factor >80%. The greatest number of specific VOCs was captured by XAW (149), followed by ENV (118), HLB (117), HRP (115), HRX (114), and XCW (114). We conclude that the tested SPE cartridges are suitable for VOC sampling from exhaled cow breath, but the SPE cartridge choice enormously affects the detected chemical groups and the number of detected VOCs. Therefore, an appropriate SPE adsorbent cartridge should be selected according to our proposed inclusion criteria. For targeted metabolomics approaches, the SPE cartridge choice depends on the VOCs or chemical compound groups of interest based on our provided VOC list. For untargeted approaches without information on the animals' metabolic condition, we suggest using multi-sorbent SPE cartridges or multiple cartridges per animal.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection ofClostridioides difficileinfection by assessment of exhaled breath volatile organic compounds. 通过评估呼出气体中的挥发性有机化合物来检测艰难梭菌感染。
IF 3.7 4区 医学
Journal of breath research Pub Date : 2024-03-28 DOI: 10.1088/1752-7163/ad3572
Teny M John, Nabin K Shrestha, Leen Hasan, Kirk Pappan, Owen Birch, David Grove, Billy Boyle, Max Allsworth, Priyanka Shrestha, Gary W Procop, Raed A Dweik
{"title":"Detection of<i>Clostridioides difficile</i>infection by assessment of exhaled breath volatile organic compounds.","authors":"Teny M John, Nabin K Shrestha, Leen Hasan, Kirk Pappan, Owen Birch, David Grove, Billy Boyle, Max Allsworth, Priyanka Shrestha, Gary W Procop, Raed A Dweik","doi":"10.1088/1752-7163/ad3572","DOIUrl":"10.1088/1752-7163/ad3572","url":null,"abstract":"<p><p><i>Clostridioides difficile</i>infection (CDI) is the leading cause of hospital-acquired infective diarrhea. Current methods for diagnosing CDI have limitations; enzyme immunoassays for toxin have low sensitivity and<i>Clostridioides difficile</i>polymerase chain reaction cannot differentiate infection from colonization. An ideal diagnostic test that incorporates microbial factors, host factors, and host-microbe interaction might characterize true infection. Assessing volatile organic compounds (VOCs) in exhaled breath may be a useful test for identifying CDI. To identify a wide selection of VOCs in exhaled breath, we used thermal desorption-gas chromatography-mass spectrometry to study breath samples from 17 patients with CDI. Age- and sex-matched patients with diarrhea and negative<i>C.difficile</i>testing (no CDI) were used as controls. Of the 65 VOCs tested, 9 were used to build a quadratic discriminant model that showed a final cross-validated accuracy of 74%, a sensitivity of 71%, a specificity of 76%, and a receiver operating characteristic area under the curve of 0.72. If these findings are proven by larger studies, breath VOC analysis may be a helpful adjunctive diagnostic test for CDI.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信