Exhaled breath analysis for the discrimination of asthma and chronic obstructive pulmonary disease.

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS
Lan Li, Haibin Chen, Jinying Shi, Shukun Chai, Li Yan, Deyang Meng, Zhigang Cai, Jitao Guan, Yunwei Xin, Xu Zhang, Wuzhuang Sun, Xi Lu, Mengqi He, Qingyun Li, Xixin Yan
{"title":"Exhaled breath analysis for the discrimination of asthma and chronic obstructive pulmonary disease.","authors":"Lan Li, Haibin Chen, Jinying Shi, Shukun Chai, Li Yan, Deyang Meng, Zhigang Cai, Jitao Guan, Yunwei Xin, Xu Zhang, Wuzhuang Sun, Xi Lu, Mengqi He, Qingyun Li, Xixin Yan","doi":"10.1088/1752-7163/ad53f8","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic obstructive pulmonary disease (COPD) and asthma are the most common chronic respiratory diseases. In middle-aged and elderly patients, it is difficult to distinguish between COPD and asthma based on clinical symptoms and pulmonary function examinations in clinical practice. Thus, an accurate and reliable inspection method is required. In this study, we aimed to identify breath biomarkers and evaluate the accuracy of breathomics-based methods for discriminating between COPD and asthma. In this multi-center cross-sectional study, exhaled breath samples were collected from 89 patients with COPD and 73 with asthma and detected on a high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) platform from 20 October 2022, to 20 May 2023, in four hospitals. Data analysis was performed from 15 June 2023 to 16 August 2023. The sensitivity, specificity, and accuracy were calculated to assess the overall performance of the volatile organic component (VOC)-based COPD and asthma discrimination models. Potential VOC markers related to COPD and asthma were also analyzed. The age of all participants ranged from to 18-86 years, and 54 (33.3%) were men. The age [median (minimum, maximum)] of COPD and asthma participants were 66.0 (46.0, 86.0), and 44.0 (17.0, 80.0). The male and female ratio of COPD and asthma participants were 14/75 and 40/33, respectively. Based on breathomics feature selection, ten VOCs were identified as COPD and asthma discrimination biomarkers via breath testing. The joint panel of these ten VOCs achieved an area under the curve of 0.843, sensitivity of 75.9%, specificity of 87.5%, and accuracy of 80.0% in COPD and asthma discrimination. Furthermore, the VOCs detected in the breath samples were closely related to the clinical characteristics of COPD and asthma. The VOC-based COPD and asthma discrimination model showed good accuracy, providing a new strategy for clinical diagnosis. Breathomics-based methods may play an important role in the diagnosis of COPD and asthma.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad53f8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic obstructive pulmonary disease (COPD) and asthma are the most common chronic respiratory diseases. In middle-aged and elderly patients, it is difficult to distinguish between COPD and asthma based on clinical symptoms and pulmonary function examinations in clinical practice. Thus, an accurate and reliable inspection method is required. In this study, we aimed to identify breath biomarkers and evaluate the accuracy of breathomics-based methods for discriminating between COPD and asthma. In this multi-center cross-sectional study, exhaled breath samples were collected from 89 patients with COPD and 73 with asthma and detected on a high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) platform from 20 October 2022, to 20 May 2023, in four hospitals. Data analysis was performed from 15 June 2023 to 16 August 2023. The sensitivity, specificity, and accuracy were calculated to assess the overall performance of the volatile organic component (VOC)-based COPD and asthma discrimination models. Potential VOC markers related to COPD and asthma were also analyzed. The age of all participants ranged from to 18-86 years, and 54 (33.3%) were men. The age [median (minimum, maximum)] of COPD and asthma participants were 66.0 (46.0, 86.0), and 44.0 (17.0, 80.0). The male and female ratio of COPD and asthma participants were 14/75 and 40/33, respectively. Based on breathomics feature selection, ten VOCs were identified as COPD and asthma discrimination biomarkers via breath testing. The joint panel of these ten VOCs achieved an area under the curve of 0.843, sensitivity of 75.9%, specificity of 87.5%, and accuracy of 80.0% in COPD and asthma discrimination. Furthermore, the VOCs detected in the breath samples were closely related to the clinical characteristics of COPD and asthma. The VOC-based COPD and asthma discrimination model showed good accuracy, providing a new strategy for clinical diagnosis. Breathomics-based methods may play an important role in the diagnosis of COPD and asthma.

用于鉴别哮喘和慢性阻塞性肺病的呼气分析。
摘要 背景 慢性阻塞性肺疾病(COPD)和哮喘是最常见的慢性呼吸系统疾病。在临床实践中,中老年患者很难根据临床症状和肺功能检查来区分 COPD 和哮喘。本研究旨在确定呼吸生物标志物,并评估基于呼吸组学的方法区分慢性阻塞性肺病和哮喘的准确性。在这项多中心横断面研究中,我们从 2022 年 10 月 20 日至 2023 年 5 月 20 日在四家医院收集了 89 名慢性阻塞性肺病患者和 73 名哮喘患者的呼气样本,并在高压光子电离飞行时间质谱(HPPI-TOFMS)平台上进行了检测。数据分析于 2023 年 6 月 15 日至 2023 年 8 月 16 日进行。通过计算灵敏度、特异性和准确性来评估基于挥发性有机化合物的慢性阻塞性肺病和哮喘鉴别模型的整体性能。此外,还分析了与慢性阻塞性肺病和哮喘相关的潜在挥发性有机化合物标记物。 结果 所有参与者的年龄在 18-86 岁之间,男性 54 人(33.3%)。根据呼气组学特征选择,通过呼气测试确定了 10 种挥发性有机化合物作为慢性阻塞性肺病和哮喘的鉴别生物标志物。这十种挥发性有机化合物的联合面板在慢性阻塞性肺病和哮喘鉴别中的曲线下面积(AUC)为 0.843,灵敏度为 75.9%,特异度为 87.5%,准确度为 80.0%。此外,呼气样本中检测到的挥发性有机化合物与慢性阻塞性肺病和哮喘的临床特征密切相关。基于呼吸组学的方法可在慢性阻塞性肺病和哮喘的诊断中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信