从肺癌患者和易感烟草消费者呼出的冷凝液和痰中提取外泌体并确定其特征--潜在的无创诊断生物标记源。

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS
Afsareen Bano, Pooja Yadav, Megha Sharma, Deepika Verma, Ravina Vats, Dhruva Chaudhry, Pawan Kumar, Rashmi Bhardwaj
{"title":"从肺癌患者和易感烟草消费者呼出的冷凝液和痰中提取外泌体并确定其特征--潜在的无创诊断生物标记源。","authors":"Afsareen Bano, Pooja Yadav, Megha Sharma, Deepika Verma, Ravina Vats, Dhruva Chaudhry, Pawan Kumar, Rashmi Bhardwaj","doi":"10.1088/1752-7163/ad5eae","DOIUrl":null,"url":null,"abstract":"<p><p>Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (<i>n</i>= 30), tobacco smokers (<i>n</i>= 30), and lung cancer patients (<i>n</i>= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (<i>p</i> < 0.05) and sputum (<i>p</i>= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (<i>p</i> < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":"18 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source.\",\"authors\":\"Afsareen Bano, Pooja Yadav, Megha Sharma, Deepika Verma, Ravina Vats, Dhruva Chaudhry, Pawan Kumar, Rashmi Bhardwaj\",\"doi\":\"10.1088/1752-7163/ad5eae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (<i>n</i>= 30), tobacco smokers (<i>n</i>= 30), and lung cancer patients (<i>n</i>= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (<i>p</i> < 0.05) and sputum (<i>p</i>= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (<i>p</i> < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad5eae\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad5eae","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

外泌体的非侵入性样本来源,如呼气和痰,与肿瘤微环境非常接近,可能含有肺癌的生物标记物,比侵入性样本来源更容易进行生物标记物筛选。我们亟需针对低容量非侵入性样本的标准化外泌体提取和表征方法。我们从健康的非吸烟者(30 人)、烟草吸烟者(30 人)和肺癌患者(40 人)身上分离出呼气冷凝物(EBC)和痰外泌体并对其进行表征,并将结果与侵入性样本来源进行关联。EBC样本使用市售的R-试管收集。收集痰液样本时,参与者要深呼吸、屏住呼吸并在收集容器中咳嗽。采用动态光散射、纳米粒子跟踪分析和透射电子显微镜评估外泌体形态。蛋白质分离、Western 印迹、通过 EXOCET 进行外泌体定量,以及傅立叶变换红外光谱进行分子表征。从 EBC 和痰样本中成功分离出了外泌体,其产量和纯度足以进行后续的下游处理和表征。根据外泌体的大小、形状和表面标记物的表达,对外泌体进行了确认。值得注意的是,根据我们的研究结果,癌症外泌体不仅在血浆亚组中体积最大,在EBC(p p= 0.0036)亚组中也是如此。对照亚组与对照亚组之间的外泌体浓度存在明显差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source.

Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (n= 30), tobacco smokers (n= 30), and lung cancer patients (n= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (p < 0.05) and sputum (p= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (p < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信