{"title":"Nomogram for individualized prediction of inferior vena cava filter retrieval difficulty","authors":"Shan-shan Yu, Jia-yi Xie, Bi-chen Xue, Hong-bo Xu","doi":"10.1007/s11771-024-5667-7","DOIUrl":"https://doi.org/10.1007/s11771-024-5667-7","url":null,"abstract":"<p>Inferior vena cava filter (IVCF) could reduce the risk of fatal pulmonary embolism. However, procedural difficulties often exist during IVCF retrieval, requiring extra devices and venous access. Thus, an effective prediction model is essential to predicting the difficulties in preoperative planning, hence aiding efficient intraoperative cooperation. This study retrospectively analyzed 477 cases of IVCF retrievals in the center of the Third Xiangya Hospital of Central South University from 2011 to 2020, among which 344 cases were defined non-difficult retrieval and 133 cases as difficult retrieval (including 35 failed retrievals). The cases before 2017 were classified as training cohort (TC), while the rest as validation cohort (VC). A nomogram was generated to predict IVCF retrieval difficulty with risk factors validated by univariate and multivariate logistic regression analysis. The study then evaluated the model performance with calibration plot, receiver operating characteristic curve (ROC) and decision curve analysis (DCA). It is shown that IVCF retrieval difficulty increases significantly when factors of embedded top of the filter, leg penetration, and irregular anticoagulation occur. Moreover, the nomogram shows the predictive accuracy values of TC and VC are 0.819 and 0.817, respectively. The calibration curve of TC and VC indicates that the model can effectively predict the risk of difficult retrieval. This nomogram has good predictive effect and low generalization error, which can provide evidence for surgical decision of IVCF retrieval.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"170 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combined effect of rock fabric, in-situ stress, and fluid viscosity on hydraulic fracture propagation in Chang 73 lacustrine shale from the Ordos Basin","authors":"Peng Guo, Xiao Li, Shou-ding Li, Jian-ming He, Tian-qiao Mao, Bo Zheng","doi":"10.1007/s11771-024-5657-9","DOIUrl":"https://doi.org/10.1007/s11771-024-5657-9","url":null,"abstract":"<p>Shale oil is an important area for the increasing of crude oil reserves and production. Due to the tight structure and ultra-low permeability of shale oil reservoir, the industrial exploitation needs large-scale hydraulic fracturing. However, compared with marine shale reservoirs, the Chang 7<sub>3</sub> lacustrine shales of the Ordos Basin present large differences in mineral composition and rock fabric, resulting in strong mechanical heterogeneity. The target interval selection and effective hydraulic fracturing of lacustrine shale oil reservoir requires a thorough understanding of the mechanical behavior and hydraulic fracture propagation in shale rocks. In-situ X-ray CT mechanical tests and triaxial hydraulic fracturing tests on Chang 7<sub>3</sub> lacustrine shales were conducted. The effects of rock fabric, in-situ stress difference and fluid viscosity on hydraulic fracture vertical propagation were analyzed. The results show that the rock fabric significantly influences the mechanical behavior and failure process of lacustrine shales. The vertical growth of the hydraulic fracture in lacustrine shales is dictated by vertical stress difference and fluid viscosity. When the vertical stress difference is small, the intrinsic weak interfaces in black shale significantly inhibit the vertical growth of hydraulic fracture. With the increase of vertical stress difference, the fracture network volume of black shale increases linearly, however, the fracture volume of laminar shale first increases and then decreases. Increasing the fracturing fluid viscosity could weaken the obstruction effect of weak bedding interfaces and promote the vertical propagation of hydraulic fracture.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"94 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acoustic emission characteristics in tensile-shear failure of non-persistent jointed rocks with different undulation angles","authors":"Hao-lan Pan, Jie Hu, Xiao-li Rong, Shao-shuai Shi, Peng He, Yi-fan Xu","doi":"10.1007/s11771-024-5643-2","DOIUrl":"https://doi.org/10.1007/s11771-024-5643-2","url":null,"abstract":"<p>Tensile-shear failure commonly occurs during the construction of deep in-situ tunnels. In this paper, direct tensile-shear tests were conducted on rock-like specimens containing regular serrated joints using a self-developed multifunctional rock mechanical test system. The influence of joint undulation angle variation on the tensile-shear strength, temperature, and acoustic emission (AE) was investigated. The results showed that the peak shear strength of the specimen decreased with the increase of joint undulation angle, and the increase of joint undulation angle led to the rock bridge being more prone to tensile failure and made the crack contour exhibit an obvious step-like feature. When approaching failure, the specimens all generated vigorous AE signals and yielded more cracks, which were accompanied by energy dissipation and manifested a decrease in temperature. During the loading process of the three specimens, the AE <i>b</i> values exhibited an overall trend of first increasing and then decreasing, with a dramatic fall near the peak strength. Cracks were classified by RA-AF values, and the results showed that in the initial loading process, the cracks were primarily of pure tensile types. The number of shear and composite cracks increased significantly when the specimens were close to failure.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"57 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction on compression indicators of clay soils using XGBoost with Bayesian optimization","authors":"Hong-tao Wu, Zi-long Zhang, Daniel Dias","doi":"10.1007/s11771-024-5681-9","DOIUrl":"https://doi.org/10.1007/s11771-024-5681-9","url":null,"abstract":"<p>The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects. Directly acquiring precise values of compression indicators from consolidation tests are cumbersome and time-consuming. Based on experimental results from a series of index tests, this study presents a hybrid method that combines the XGBoost model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils. The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network (ANN) and support vector machine (SVM) models. In addition to the lowest prediction error, the proposed XGBoost-based method enhances the interpretability by feature importance analysis, which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils. This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"19 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of optimized random forest regressors in predicting the maximum principal stress of aseismic tunnel lining","authors":"Xian-cheng Mei, Chang-dong Ding, Jia-min Zhang, Chuan-qi Li, Zhen Cui, Qian Sheng, Jian Chen","doi":"10.1007/s11771-024-5680-x","DOIUrl":"https://doi.org/10.1007/s11771-024-5680-x","url":null,"abstract":"<p>Using flexible damping technology to improve tunnel lining structure is an emerging method to resist earthquake disasters, and several methods have been explored to predict mechanical response of tunnel lining with damping layer. However, the traditional numerical methods suffer from the complex modelling and time-consuming problems. Therefore, a prediction model named the random forest regressor (RFR) is proposed based on 240 numerical simulation results of the mechanical response of tunnel lining. In addition, circle mapping (CM) is used to improve Archimedes optimization algorithm (AOA), reptile search algorithm (RSA), and Chernobyl disaster optimizer (CDO) to further improve the predictive performance of the RFR model. The performance evaluation results show that the CMRSA-RFR is the best prediction model. The damping layer thickness is the most important feature for predicting the maximum principal stress of tunnel lining containing damping layer. This study verifies the feasibility of combining numerical simulation with machine learning technology, and provides a new solution for understanding the mechanical response of aseismic tunnel with damping layer.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"198 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei-peng Yang, Tao Wen, Lei Zhang, Jian-ying Wang, Shi-long Huang, Shou-xun Ji, Hai-lin Yang
{"title":"Role of inclination angle on columnar-to-equiaxed transition in the eutectic Al-5Mg-2Si alloy fabricated by laser powder bed fusion","authors":"Fei-peng Yang, Tao Wen, Lei Zhang, Jian-ying Wang, Shi-long Huang, Shou-xun Ji, Hai-lin Yang","doi":"10.1007/s11771-024-5679-3","DOIUrl":"https://doi.org/10.1007/s11771-024-5679-3","url":null,"abstract":"<p>In this study, the effect of inclination angles relative to the building direction in the additively manufactured eutectic Al-5Mg-2Si alloy was investigated through the laser powder bed fusion (LPBF). The microstructures and mechanical properties of the Al-5Mg-2Si alloy manufactured with different inclination angles (0°, 30°, 45°, 60° and 90°) were reported and discussed. It is found that the “semicircular” melt pool (MP) in the load bearing face of 0° sample was eventually transformed into “stripe-like” MP in the 90° sample, accompanied by an increased fraction of melt pool boundaries (MPBs). Moreover, the microstructural analysis revealed that the columnar-to-equiaxed transition (CET) of the α-Al grains and eutectic Mg<sub>2</sub>Si was completed in the 90° sample, which were significantly refined with the average size of 9.5 µm and 0.44 µm, respectively. It is also found that the 90° sample exhibited good combination of strength and elongation (i. e. yield strength (YS) of 393 MPa, ultimate tensile strength (UTS) of 483 MPa and elongation (El) of 8.1%). The anisotropic mechanical properties were highly associated with the refined microstructures, thermal stress, and density of MPBs. Additionally, the CET driven by inclination angles were attributed to the variation of thermal conditions inside the local MPs.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"26 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao-sen Wang, Man-chao He, Jiong Wang, Rui Wang, Can Ming, Dao-yong Zhu, Zi-min Ma
{"title":"Deformations and failures of goaf-side entries driving adjacent to longwall top coal caving panel","authors":"Hao-sen Wang, Man-chao He, Jiong Wang, Rui Wang, Can Ming, Dao-yong Zhu, Zi-min Ma","doi":"10.1007/s11771-024-5651-2","DOIUrl":"https://doi.org/10.1007/s11771-024-5651-2","url":null,"abstract":"<p>This paper utilizes physical and numerical model experiments to study the deformation and failure mechanisms of goaf-side entries driving adjacent to longwall top coal caving (GEDLTCC) panel. The physical model experiment reveals that the deformation and failure process of GEDLTCC can be divided into four stages: initial deformation stage I (− 47 m to 45 m behind the adjacent panel), rapid deformation stage II (45 to 150 m), deformation stabilization stage III (150 to 240 m) and compaction stabilization stage IV (beyond 240 m). Notably, large deformation of the GEDLTCC surrounding rock primarily occurs during stages II and III. This deformation is primarily attributed to the stress concentration resulting from the lateral cantilever beam structure above the goaf-side entry. Therefore, this paper proposed an innovative approach that employs roof pre-splitting technology to optimize the roof structure, thereby controlling the large deformation of GEDLTCC and automatically retaining entry. Numerical simulations and field applications show that after adopting the automatically retained entry by roof pre-splitting (ARERP) technology, the abutment pressure of the integrated coal and the convergence of roof-to-floor and two ribs were reduced by 6.49%, 79.25% and 60%, respectively. Therefore, ARERP technology can effectively control the deformation of the GEDLTCC.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"136 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu-tao Nie, Wei Guo, Li-zhong Jiang, Zhi-wu Yu, Chen Zeng, Yang Wang, Xu-en He, Shao-xun Ren, Ren-qiang Huang, Guang-yue Liang, Chang-qing Li
{"title":"Influence of pier height on the safety of trains running on high-speed railway bridges during earthquakes","authors":"Yu-tao Nie, Wei Guo, Li-zhong Jiang, Zhi-wu Yu, Chen Zeng, Yang Wang, Xu-en He, Shao-xun Ren, Ren-qiang Huang, Guang-yue Liang, Chang-qing Li","doi":"10.1007/s11771-024-5682-8","DOIUrl":"https://doi.org/10.1007/s11771-024-5682-8","url":null,"abstract":"<p>Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges, and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system. In this paper, a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system, and the corresponding numerical model is established. The reliability of the numerical model is verified by experiments. Then, the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges. The results show that when the pier height changes, the frequency of the bridge below the 30 m pier height changes greater; the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train, and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier, which increases the risk of derailment; with the pier height increases from 8 m to 50 m, the derailment coefficient obtained by numerical simulations increases by 75% on average, and the spectral intensity obtained by experiments increases by 120% on average, two indicators exhibit logarithmic variation.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shu-ting Tian, Dong-ye Zhao, Li-Juan Huo, Jun Ma, Rui Yang
{"title":"Comparing three stabilizers for stabilizing FeS nanoparticles: Performance and effects on immobilization of cadmium in water and soil","authors":"Shu-ting Tian, Dong-ye Zhao, Li-Juan Huo, Jun Ma, Rui Yang","doi":"10.1007/s11771-024-5602-y","DOIUrl":"https://doi.org/10.1007/s11771-024-5602-y","url":null,"abstract":"<p>In this study, we evaluated effectiveness of three polysaccharide stabilizers (sodium carboxymethyl cellulose (CMC), sodium carboxymethyl starch (CMS), and a water-soluble starch) for stabilizing FeS nanoparticles, and tested the stabilized nanoparticles for immobilization of Cd<sup>2+</sup> in water and soil. Fully stabilized FeS nanoparticles (100 mg/L FeS) were obtained using 0.010 wt% CMC, 0.025 wt% CMS, or 0.065 wt% starch. CMC-FeS showed a highly negative zeta potential, starch-FeS remained neutral, whereas CMS-FeS displayed a moderately negative potential. CMC-FeS showed the fastest sorption rate and highest sorption capacity for Cd<sup>2+</sup>. When a Cd-laden soil (58.3 mg/kg Cd) was amended with 100 mg/L CMC-FeS or CMS-FeS, the TCLP-leachable Cd was reduced by 88.4% and 68.0%, respectively. Both CMC-FeS and CMS-FeS were transportable through a model soil and showed high potential for in-situ immobilization of Cd<sup>2+</sup> in soil. Nearly complete breakthrough occurred at 4.5 pore volumes (PVs) for CMC-FeS and about 25 PVs for CMS-FeS. When the Cd-laden soil was treated with 55 PVs of CMC-FeS and CMS-FeS suspensions (100 mg/L), the water-leachable soluble Cd was reduced by 98.2% and 98.0%, respectively. The three stabilizers may find their best uses in soil remediation according to the target contaminants, transport properties in soil, and material cost.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"28 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of migration and prediction on heavy metals from soil to groundwater in an abandoned lead/zinc smelting site","authors":"Yun-xia Zhang, Zhao-hui Guo, Hui-min Xie, Xi-yuan Xiao, Rui Xu","doi":"10.1007/s11771-024-5626-3","DOIUrl":"https://doi.org/10.1007/s11771-024-5626-3","url":null,"abstract":"<p>Long-term metal smelting activities can lead to enrichment and dispersion of heavy metals in the site soil and groundwater. The migration and prediction of heavy metals from soil to groundwater in an abandoned lead/zinc smelting site were studied using machine learning model. The results showed that heavy metals in site soil mainly accumulated in the fill layer, and vertically migrated to groundwater significantly. The mean of Pb, As, and Cd in site soils significantly exceeded the screening value of risk control standard for soil contamination of development land. The mean of Zn, Cd, Pb and As in groundwater exceeded the corresponding groundwater Class VI limit of standard for groundwater quality of China. Soil contamination of heavy metals was serious in the pyrometallurgical area, hydrometallurgical area and raw material storage area, and Cd and Pb in the upper soil layer had a strong migration potential downward with active and reducible state. The synergistic remediation for site soil and groundwater in smelting site was suggested when groundwater level was below 5 m and soil Cd concentration exceeded 344 mg/kg, or when the soil active Pb concentration exceeded 5425 mg/kg.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"3 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}