Shu-ting Tian, Dong-ye Zhao, Li-Juan Huo, Jun Ma, Rui Yang
{"title":"Comparing three stabilizers for stabilizing FeS nanoparticles: Performance and effects on immobilization of cadmium in water and soil","authors":"Shu-ting Tian, Dong-ye Zhao, Li-Juan Huo, Jun Ma, Rui Yang","doi":"10.1007/s11771-024-5602-y","DOIUrl":null,"url":null,"abstract":"<p>In this study, we evaluated effectiveness of three polysaccharide stabilizers (sodium carboxymethyl cellulose (CMC), sodium carboxymethyl starch (CMS), and a water-soluble starch) for stabilizing FeS nanoparticles, and tested the stabilized nanoparticles for immobilization of Cd<sup>2+</sup> in water and soil. Fully stabilized FeS nanoparticles (100 mg/L FeS) were obtained using 0.010 wt% CMC, 0.025 wt% CMS, or 0.065 wt% starch. CMC-FeS showed a highly negative zeta potential, starch-FeS remained neutral, whereas CMS-FeS displayed a moderately negative potential. CMC-FeS showed the fastest sorption rate and highest sorption capacity for Cd<sup>2+</sup>. When a Cd-laden soil (58.3 mg/kg Cd) was amended with 100 mg/L CMC-FeS or CMS-FeS, the TCLP-leachable Cd was reduced by 88.4% and 68.0%, respectively. Both CMC-FeS and CMS-FeS were transportable through a model soil and showed high potential for in-situ immobilization of Cd<sup>2+</sup> in soil. Nearly complete breakthrough occurred at 4.5 pore volumes (PVs) for CMC-FeS and about 25 PVs for CMS-FeS. When the Cd-laden soil was treated with 55 PVs of CMC-FeS and CMS-FeS suspensions (100 mg/L), the water-leachable soluble Cd was reduced by 98.2% and 98.0%, respectively. The three stabilizers may find their best uses in soil remediation according to the target contaminants, transport properties in soil, and material cost.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"28 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5602-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we evaluated effectiveness of three polysaccharide stabilizers (sodium carboxymethyl cellulose (CMC), sodium carboxymethyl starch (CMS), and a water-soluble starch) for stabilizing FeS nanoparticles, and tested the stabilized nanoparticles for immobilization of Cd2+ in water and soil. Fully stabilized FeS nanoparticles (100 mg/L FeS) were obtained using 0.010 wt% CMC, 0.025 wt% CMS, or 0.065 wt% starch. CMC-FeS showed a highly negative zeta potential, starch-FeS remained neutral, whereas CMS-FeS displayed a moderately negative potential. CMC-FeS showed the fastest sorption rate and highest sorption capacity for Cd2+. When a Cd-laden soil (58.3 mg/kg Cd) was amended with 100 mg/L CMC-FeS or CMS-FeS, the TCLP-leachable Cd was reduced by 88.4% and 68.0%, respectively. Both CMC-FeS and CMS-FeS were transportable through a model soil and showed high potential for in-situ immobilization of Cd2+ in soil. Nearly complete breakthrough occurred at 4.5 pore volumes (PVs) for CMC-FeS and about 25 PVs for CMS-FeS. When the Cd-laden soil was treated with 55 PVs of CMC-FeS and CMS-FeS suspensions (100 mg/L), the water-leachable soluble Cd was reduced by 98.2% and 98.0%, respectively. The three stabilizers may find their best uses in soil remediation according to the target contaminants, transport properties in soil, and material cost.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering