{"title":"Influence of pH on the leaching behaviour of heavy metal(loid)s in copper smelting flue dust and mineralogical control mechanism","authors":"Xiao-yan Wang, Xi-yuan Xiao, Zhao-hui Guo, Chi Peng, Anaman Richmond, Sheng-guo Xue, Ataa Bridget","doi":"10.1007/s11771-024-5630-7","DOIUrl":"https://doi.org/10.1007/s11771-024-5630-7","url":null,"abstract":"<p>The release behavior of heavy metal(loid)s in Cu smelting flue dust, collected from a deserted Cu smelter, and its mineralogical control mechanism were studied using toxicity characteristic leaching procedure (TCLP) test and wide pH range (3–13) dependent leaching experiments. The concentrations of As, Cd, Cu, Pb and Zn in TCLP leachate were 704, 82.7, 2.08, 3.1 and 3.26 times threshold of corresponding elements listed in identification standards for hazardous wastes of China (GB 5085.3—2007), respectively. High release percentage of As ranged from 26.0% to 28.1% over the entire pH range. The leachability of Cd, Cu, and Zn was significantly high under acidic conditions, while that of Pb was highly released at pH 13.0. The geochemical analysis showed that As solubility was partly controlled by the new formation of Ca, Cu, Pb, and Zn arsenates under pH 5.5–11.5, and that of Cd, Cu, Pb, and Zn was mainly controlled by hydroxide precipitation under alkaline condition. BCR extraction and XRD analysis indicated that higher leachate Cd and Zn concentrations were consistent with their higher content of active forms in dust. The study provides scientific guidance for the treatment and disposal of the flue dust for heavy metal(loid)s pollution prevention.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"70 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leachability of potentially toxic elements from soils: New insights into coupled effects of acidification and freeze-thaw","authors":"Tian-yu Fu, Jie Li, Rong-bing Fu","doi":"10.1007/s11771-024-5603-x","DOIUrl":"https://doi.org/10.1007/s11771-024-5603-x","url":null,"abstract":"<p>Little was known about the leaching behavior of potentially toxic elements (PTEs) from soils under the interaction between freeze-thaw (F-T) cycle and the solutions of varying pH values. In this study, PTEs leachability from soils before and after F-T tests was evaluated using toxicity characteristics leaching procedure (TCLP) test. The microstructure and mineralogical evolution of soil mineral particles were conducted using pores (particles) and cracks analysis system (PCAS) and PHREEQC. The results indicated that during 30 F-T cycles, the maximum leaching concentrations of PTEs were 0.22 mg/L for As, 0.61 mg/L for Cd, 2.46 mg/L for Cu, 3.08 mg/L for Mn, 29.36 mg/L for Pb and 8.07 mg/L for Zn, respectively. Under the coupled effects of F-T cycle and acidification, the porosity of soil particles increased by 4.79%, as confirmed by the microstructure damage caused by the evolution of pores and cracks. The anisotropy of soil particles increased under F-T effects, whereas that decreased under the coupled effects of F-T cycle and acidification. The results from SEM-EDS, PCAS quantification and PHREEQC modeling indicated that the release mechanism of PTEs was not only associated with the microstructure change in mineral particles, but also affected by protonation, as well as the dissolution and precipitation of minerals. Overall, these results would provide an important reference for soil remediation assessments in seasonal frozen areas.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"197 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adsorption of Cr(VI) on calcined MgAl-layered double hydroxides and recycling of spent adsorbents for the removal of organic dyes","authors":"Chao-rong Chen, Zhen-yu Xie, Qi Chen, Wei Peng, Gao-feng Wang, Bo-wen Yang, Fei Ge","doi":"10.1007/s11771-024-5636-1","DOIUrl":"https://doi.org/10.1007/s11771-024-5636-1","url":null,"abstract":"<p>Adsorption is considered an effective strategy for removing Cr(VI) from wastewater, but disposal of spent adsorbents is still a thorny problem. This work aims to develop an efficient adsorbent for Cr(VI) removal and recycling spent adsorbent as catalyst for the removal of organic dyes. In this study, MgAl-mixed oxides adsorbents (MgAlO) were synthesized via hydrothermal and calcination steps to effectively adsorb Cr(VI) from wastewater. The influence of initial pH and temperature on the adsorption performance of MgAlO was investigated. The maximum adsorption capacity for Cr(VI) was 95.2 mg/g at a MgAlO dosage of 1.0 g/L and a pH value of 5.5. The combination of XRD, FT-IR, and UV-vis DRS analyses revealed that CrO<sub>4</sub><sup>2−</sup> anions were intercalated into the interlayer spaces of layered double hydroxides, and high temperatures can accelerate the reconstruction of MgAlO. The adsorption of Cr(VI) by MgAlO followed the pseudo-second-order kinetic model, which included intra-particle diffusion, film diffusion, and chemical reaction. Furthermore, the resulting spent adsorbent (Cr-MgAlO) after adsorption was reused as a catalyst for methyl orange (MO) removal after adsorption (75.6% removal rate) and showed no significant decrease in removal rate after 5 cycles. The results of this study provide insights into the reuse of spent Cr(VI) adsorbent for environmental catalytic applications, which are of great importance for the disposal of waste adsorbent.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"49 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Cao, Zhao-hui Guo, Rui Xu, Wen-jun Cai, Xi-yuan Xiao
{"title":"Source quantitative identification and control for preferential contaminants in stream sediments from an abandoned lead/zinc mine","authors":"Jie Cao, Zhao-hui Guo, Rui Xu, Wen-jun Cai, Xi-yuan Xiao","doi":"10.1007/s11771-024-5598-3","DOIUrl":"https://doi.org/10.1007/s11771-024-5598-3","url":null,"abstract":"<p>Sediment is an important sink for metals within mining environments. This study employs a combination of positive matrix factorization (PMF), random forest (RF) and fuzzy analytic hierarchy process (FAHP) to investigate the source attribution and released effects of toxic elements in stream sediments originating from an abandoned lead/zinc mine. The results show that the integrated PMF-RF-FAHP approach allows for the quantitative identification of metal sources and the prioritization of control measures within the mine. The primary source of contamination in the mine stream sediments was identified as the toxic elements releasing from the ore sorting area, followed by contributions from the mining area. The transport of toxic elements from mine into stream sediments is influenced by surface water flows, of which the upstream ore sorting area is an important factor to the contamination of the tailings area, riparian zone and hazardous waste landfills. The levels of main toxic elements, such as As, Cd, Sb, and Tl in stream sediments significantly exceed the background values for stream sediments in China, respectively. The similarities in sources for As, Cd, Sb and Tl in both soils and sediments exceeded 60%. The ore sorting area accounted for 48% of As, 82% of Cd and 78% of Sb contamination, while the mining area accounted for 94% of Tl contamination. This study presents a valuable methodology for pinpointing pollutant sources in mines rich in toxic elements like As and Cd. It is valuable and helpful to provide insights into tracing metal contamination and facilitating regional environmental management, both during mine industrialization and after abandonment.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"51 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He Wei, Yong He, Jun Jiang, Xiang-zhi Song, Wei Lou, Zhao Zhang, Ke-neng Zhang
{"title":"Enhanced transport of K-nZVI by bentonite suspensions in porous media","authors":"He Wei, Yong He, Jun Jiang, Xiang-zhi Song, Wei Lou, Zhao Zhang, Ke-neng Zhang","doi":"10.1007/s11771-024-5629-0","DOIUrl":"https://doi.org/10.1007/s11771-024-5629-0","url":null,"abstract":"<p>Due to high reactivity and relatively low cost, nano zero-valent iron (nZVI) has become an alternative material for in-situ remediation of contaminated sites. However, factors such as short transport distance and easy deposition in porous media also seriously restrict its injection remediation effect. The optimum ratio of bentonite and kaolin supported nano zero-valent iron (K-nZVI) in the remediation agent was determined by sedimentation and rheological tests. The transport characteristics of deionized water and bentonite suspensions carrying K-nZVI in porous media under different injection pressures were investigated using simulating column tests. The results show that bentonite suspensions could significantly improve the stability and dispersibility of K-nZVI. The proportion of bentonite and K-nZVI are 5% and 0.4%, respectively, which is the best ratio of the remediation agent. The transport capability of K-nZVI carried by deionized water increases with the increase of injection pressure, while there is a critical injection pressure for bentonite suspensions carrying K-nZVI remediation agent. The numerical simulation results show that the diffusion radius of K-nZVI is positively correlated with the injection pressure and negatively correlated with the viscosity of the remediation agent. The results provide theoretical guidance for the remediation project of heavy metal pollution in non-ferrous smelting sites.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"48 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shao-xiong Li, Xiang-feng Kong, Zhe Gao, Yu-hong He, Bao-zhong Ma, Jia Yang, Bin Yang, Da-chun Liu
{"title":"Resourceful preparation of Sb2O3 in hazardous As-Sb dust from typical lead smelter","authors":"Shao-xiong Li, Xiang-feng Kong, Zhe Gao, Yu-hong He, Bao-zhong Ma, Jia Yang, Bin Yang, Da-chun Liu","doi":"10.1007/s11771-024-5606-7","DOIUrl":"https://doi.org/10.1007/s11771-024-5606-7","url":null,"abstract":"<p>Hazardous arsenic antimony dust (HAAD), a perilous by-product with significant antimony and arsenic concentrations generated in lead smelters, poses a substantial environmental threat. The imperative of resource recycling and the innocuous processing of HAAD stand as prevalent challenges and pressing priorities. This study introduces an innovative vacuum vaporization-condensation technique to synthesize Sb<sub>2</sub>O<sub>3</sub>. ICP analysis evidenced an enhancement in the purity of the Sb<sub>2</sub>O<sub>3</sub> product from an initial 73.96% to 91.35%, with a concomitant reduction in As impurities from 18.10% to 6.20%, and residual contaminants approximating 0.17% following a dual-phase vacuum process. XRD assessments affirmed the feasibility of direct Sb<sub>2</sub>O<sub>3</sub> synthesis via vapor-phase migration and condensate amalgamation, achieving substantial As<sub>2</sub>O<sub>3</sub> impurity diminution. SEM and EPMA observations underscored a homogenous particulate morphology in the refined Sb<sub>2</sub>O<sub>3</sub>. This methodology underscores its environmental compatibility, characterized by zero gaseous effluent, absence of wastewater expulsion, and elimination of reagent usage, thereby mitigating environmental detriments.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"61 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Jiang, Hao-hao Luo, Shu-fei Wang, Xiao-duo Ou, Jian Su, Jun-lin Chen
{"title":"Synthesis of foamed geopolymers by substituting fly ash with tailing slurry for the highly efficient removal of heavy metal contaminants: Behavioral and mechanistic studies","authors":"Jie Jiang, Hao-hao Luo, Shu-fei Wang, Xiao-duo Ou, Jian Su, Jun-lin Chen","doi":"10.1007/s11771-024-5607-6","DOIUrl":"https://doi.org/10.1007/s11771-024-5607-6","url":null,"abstract":"<p>This study aimed to synthesize porous geopolymers from tailing slurry, a byproduct of bauxite mining, for use as potential materials for groundwater remediation. The effects of various factors, such as foaming agents, liquid-solid (L/S) ratio, and foam stabilizers, on the geopolymers’ pore structure and adsorption properties were investigated. Batch experiments and characterization methods were conducted to evaluate the adsorption capacity and mechanism of the geopolymers on binary heavy metals (Pb<sup>2+</sup> and Cu<sup>2+</sup>). The results showed that adjusting the foaming behavior resulted in a porous geopolymer with porosity of 81.4%, connectivity of 17.2%, and water absorption rate of 122.9%. The presence of closed pores and capillaries hindered the removal performance of heavy metals. In contrast, optimizing foaming behavior could increase the adsorption capacity of Pb<sup>2+</sup> from 7.49 mg/g to 24.95 mg/g by improving pore connectivity. The main removal mechanisms include physical sealing, chemical precipitation of heavy metal ions with —OH, and the formation of chemical bonds T (Si, Al)—O—M (Pb, Cu). Tailing slurry-based porous geopolymers (TPGs) demonstrated excellent heavy metal removal performance and exhibited great potential in remediating mine-polluted groundwater.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"197 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141510041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of soil heavy metals at an abandoned smelting site based on particle size fraction and its implications for remediation strategy","authors":"Peng Zhao, Muhammad Adnan, Pei-wen Xiao, Xue-feng Yang, Hai-yan Wang, Bao-hua Xiao, Sheng-guo Xue","doi":"10.1007/s11771-024-5646-z","DOIUrl":"https://doi.org/10.1007/s11771-024-5646-z","url":null,"abstract":"<p>Soil particle size plays a crucial role in the distribution and occurrence of soil heavy metals (HMs). Comparative studies on the distribution of HMs across soil particle sizes of various areas affected by smelting are scarce. Three soil profiles, including smelting slag heap (SH), traffic area (TA), and adjacent farmland (FA), were sampled at an abandoned Pb smelting site, and the geochemical distribution and occurrence of HMs in different soil particle fractions (>150 µm, 45 −150 µm, and <45 µm) were comparatively investigated. Results showed different distribution of HMs across soil fractions between the smelting site and farmland. Average accumulation factors (<i>F</i><sub>A</sub>) of HMs increased from 0.78 to 1.14 as the particle size increased in the SH related to the stockpiling and mechanical mixing of coarse slags, while decreased from 1.49 to 0.60 in the FA related to metal-enriched fine particles released from smelting. The coarser fraction had a higher mass loading of HMs (>50%) in the smelting site soils, where the contribution of waste residues was significant. Therefore, physical separation techniques are recommended in the remediation of soil contamination. The study connected smelting impacts and occurrence of HMs across particle sizes which has implications for remediation strategy.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"2 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai-li Zhang, Peng Zhao, Wen-yan Gao, Bao-hua Xiao, Xue-feng Yang, Lei Song, Xiang Feng, Lin Guo, Yong-ping Lu, Hai-feng Li, Jing Sun
{"title":"Contaminant transport modelling of heavy metal pollutants in soil and groundwater: An example at a non-ferrous smelter site","authors":"Hai-li Zhang, Peng Zhao, Wen-yan Gao, Bao-hua Xiao, Xue-feng Yang, Lei Song, Xiang Feng, Lin Guo, Yong-ping Lu, Hai-feng Li, Jing Sun","doi":"10.1007/s11771-024-5639-y","DOIUrl":"https://doi.org/10.1007/s11771-024-5639-y","url":null,"abstract":"<p>The topsoil of smelter sites is subjected to severe contamination by heavy metals (HMs). Existing numerical simulations typically treat soil and groundwater separately owing to data limitations and computational constraints, which does not reflect the actual situation. Herein, a three-dimensional coupled soil-groundwater reactive solute transport numerical model was developed using the Galerkin finite element method with the smelter as the research object. This model treats soil and groundwater as a whole system, providing a quantitative characterization of HMs migration patterns in soil and groundwater. The model used the reaction coefficient (<i>λ</i>) and retention coefficient (<i>R</i>) to describe the release and adsorption capacities of HMs. Results from the model were consistent with actual pollution distributions in the field, indicating the efficacy of the soil-groundwater remediation technology for severe soil and localized groundwater pollution. The constructed three-dimensional coupled soil-groundwater reactive solute transport model can describe and predict the distribution and transport diffusion behavior of HMs at the study site with good efficacy. The model was also used to simulate and predict the effects of remediation technologies during the treatment of smelting site contamination, providing guidance for optimizing the treatment plan.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"86 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Soil microbial community in lead smelting area and the role of sulfur-oxidizing bacteria","authors":"Chuan Wu, Hong-ren Chen, Yong-ping Lu, Yan-ting Qi, Hai-feng Li, Xing-hua Luo, Yue-ru Chen, Wei Lou, Wei-chun Yang, Wai-chin Li","doi":"10.1007/s11771-024-5601-z","DOIUrl":"https://doi.org/10.1007/s11771-024-5601-z","url":null,"abstract":"<p>The long-term operation of the lead smelter has brought serious heavy metal pollution to the surrounding soil. The microbial community structure and composition of heavy metal contaminated soil is important for the risk assessment and pollution remediation. In this study, a lead smelter operating for more than 60 years was used to investigate the effects of heavy metal pollution on soil microbial community structure and composition in vertical profile. The results showed that the heavy metal content decreases gradually with increasing vertical depth of the soil. The diversity of soil microbial community with moderate pollution was higher than that with low pollution. Regardless of the pollution level, the diversity of soil microbial community was higher in the surface layer than in the bottom layer. The dominant relative abundance genera include <i>Perlucidibaca, Limnobacter, Delftia, Hydrogenophaga, Thiobacillus, Sulfurifustis</i> and <i>Sphingopyxis</i>, showing a higher abundance of sulfur-oxidizing bacteria (SOB). XRD results showed the presence of PbSO<sub>4</sub> in soil, may be due to the enrichment of SOB for the oxidation of sulfur. This sulfur cycle characteristic may be potential for the stabilization and remediation of lead (Pb) into PbSO<sub>4</sub>.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"94 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}