{"title":"煅烧镁铝层双氢氧化物对 Cr(VI) 的吸附和废吸附剂的回收利用以去除有机染料","authors":"Chao-rong Chen, Zhen-yu Xie, Qi Chen, Wei Peng, Gao-feng Wang, Bo-wen Yang, Fei Ge","doi":"10.1007/s11771-024-5636-1","DOIUrl":null,"url":null,"abstract":"<p>Adsorption is considered an effective strategy for removing Cr(VI) from wastewater, but disposal of spent adsorbents is still a thorny problem. This work aims to develop an efficient adsorbent for Cr(VI) removal and recycling spent adsorbent as catalyst for the removal of organic dyes. In this study, MgAl-mixed oxides adsorbents (MgAlO) were synthesized via hydrothermal and calcination steps to effectively adsorb Cr(VI) from wastewater. The influence of initial pH and temperature on the adsorption performance of MgAlO was investigated. The maximum adsorption capacity for Cr(VI) was 95.2 mg/g at a MgAlO dosage of 1.0 g/L and a pH value of 5.5. The combination of XRD, FT-IR, and UV-vis DRS analyses revealed that CrO<sub>4</sub><sup>2−</sup> anions were intercalated into the interlayer spaces of layered double hydroxides, and high temperatures can accelerate the reconstruction of MgAlO. The adsorption of Cr(VI) by MgAlO followed the pseudo-second-order kinetic model, which included intra-particle diffusion, film diffusion, and chemical reaction. Furthermore, the resulting spent adsorbent (Cr-MgAlO) after adsorption was reused as a catalyst for methyl orange (MO) removal after adsorption (75.6% removal rate) and showed no significant decrease in removal rate after 5 cycles. The results of this study provide insights into the reuse of spent Cr(VI) adsorbent for environmental catalytic applications, which are of great importance for the disposal of waste adsorbent.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of Cr(VI) on calcined MgAl-layered double hydroxides and recycling of spent adsorbents for the removal of organic dyes\",\"authors\":\"Chao-rong Chen, Zhen-yu Xie, Qi Chen, Wei Peng, Gao-feng Wang, Bo-wen Yang, Fei Ge\",\"doi\":\"10.1007/s11771-024-5636-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adsorption is considered an effective strategy for removing Cr(VI) from wastewater, but disposal of spent adsorbents is still a thorny problem. This work aims to develop an efficient adsorbent for Cr(VI) removal and recycling spent adsorbent as catalyst for the removal of organic dyes. In this study, MgAl-mixed oxides adsorbents (MgAlO) were synthesized via hydrothermal and calcination steps to effectively adsorb Cr(VI) from wastewater. The influence of initial pH and temperature on the adsorption performance of MgAlO was investigated. The maximum adsorption capacity for Cr(VI) was 95.2 mg/g at a MgAlO dosage of 1.0 g/L and a pH value of 5.5. The combination of XRD, FT-IR, and UV-vis DRS analyses revealed that CrO<sub>4</sub><sup>2−</sup> anions were intercalated into the interlayer spaces of layered double hydroxides, and high temperatures can accelerate the reconstruction of MgAlO. The adsorption of Cr(VI) by MgAlO followed the pseudo-second-order kinetic model, which included intra-particle diffusion, film diffusion, and chemical reaction. Furthermore, the resulting spent adsorbent (Cr-MgAlO) after adsorption was reused as a catalyst for methyl orange (MO) removal after adsorption (75.6% removal rate) and showed no significant decrease in removal rate after 5 cycles. The results of this study provide insights into the reuse of spent Cr(VI) adsorbent for environmental catalytic applications, which are of great importance for the disposal of waste adsorbent.</p>\",\"PeriodicalId\":15231,\"journal\":{\"name\":\"Journal of Central South University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Central South University\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11771-024-5636-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5636-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Adsorption of Cr(VI) on calcined MgAl-layered double hydroxides and recycling of spent adsorbents for the removal of organic dyes
Adsorption is considered an effective strategy for removing Cr(VI) from wastewater, but disposal of spent adsorbents is still a thorny problem. This work aims to develop an efficient adsorbent for Cr(VI) removal and recycling spent adsorbent as catalyst for the removal of organic dyes. In this study, MgAl-mixed oxides adsorbents (MgAlO) were synthesized via hydrothermal and calcination steps to effectively adsorb Cr(VI) from wastewater. The influence of initial pH and temperature on the adsorption performance of MgAlO was investigated. The maximum adsorption capacity for Cr(VI) was 95.2 mg/g at a MgAlO dosage of 1.0 g/L and a pH value of 5.5. The combination of XRD, FT-IR, and UV-vis DRS analyses revealed that CrO42− anions were intercalated into the interlayer spaces of layered double hydroxides, and high temperatures can accelerate the reconstruction of MgAlO. The adsorption of Cr(VI) by MgAlO followed the pseudo-second-order kinetic model, which included intra-particle diffusion, film diffusion, and chemical reaction. Furthermore, the resulting spent adsorbent (Cr-MgAlO) after adsorption was reused as a catalyst for methyl orange (MO) removal after adsorption (75.6% removal rate) and showed no significant decrease in removal rate after 5 cycles. The results of this study provide insights into the reuse of spent Cr(VI) adsorbent for environmental catalytic applications, which are of great importance for the disposal of waste adsorbent.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering