Journal of Cell Biology最新文献

筛选
英文 中文
Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. 激活溶酶体 Ca2+ 通道可减轻线粒体损伤和氧化应激。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-05 DOI: 10.1083/jcb.202403104
Xinghua Feng, Weijie Cai, Qian Li, Liding Zhao, Yaping Meng, Haoxing Xu
{"title":"Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress.","authors":"Xinghua Feng, Weijie Cai, Qian Li, Liding Zhao, Yaping Meng, Haoxing Xu","doi":"10.1083/jcb.202403104","DOIUrl":"10.1083/jcb.202403104","url":null,"abstract":"<p><p>Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability. 通过 CRISPRi 文库阵列抑制小鼠酵母生存所需的基因。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-10-08 DOI: 10.1083/jcb.202404085
Ken Ishikawa, Saeko Soejima, Takashi Nishimura, Shigeaki Saitoh
{"title":"Arrayed CRISPRi library to suppress genes required for Schizosaccharomyces pombe viability.","authors":"Ken Ishikawa, Saeko Soejima, Takashi Nishimura, Shigeaki Saitoh","doi":"10.1083/jcb.202404085","DOIUrl":"10.1083/jcb.202404085","url":null,"abstract":"<p><p>The fission yeast, Schizosaccharomyces pombe, is an excellent eukaryote model organism for studying essential biological processes. Its genome contains ∼1,200 genes essential for cell viability, most of which are evolutionarily conserved. To study these essential genes, resources enabling conditional perturbation of target genes are required. Here, we constructed comprehensive arrayed libraries of plasmids and strains to knock down essential genes in S. pombe using dCas9-mediated CRISPRi. These libraries cover ∼98% of all essential genes in fission yeast. We estimate that in ∼60% of these strains, transcription of a target gene was repressed so efficiently that cell proliferation was significantly inhibited. To demonstrate the usefulness of these libraries, we performed metabolic analyses with knockdown strains and revealed flexible interaction among metabolic pathways. Libraries established in this study enable comprehensive functional analyses of essential genes in S. pombe and will facilitate the understanding of essential biological processes in eukaryotes.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetochores grip microtubules with directionally asymmetric strength. 动芯以方向不对称的力量抓住微管。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-01 DOI: 10.1083/jcb.202405176
Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury
{"title":"Kinetochores grip microtubules with directionally asymmetric strength.","authors":"Joshua D Larson, Natalie A Heitkamp, Lucas E Murray, Andrew R Popchock, Sue Biggins, Charles L Asbury","doi":"10.1083/jcb.202405176","DOIUrl":"10.1083/jcb.202405176","url":null,"abstract":"<p><p>For accurate mitosis, all chromosomes must achieve \"biorientation,\" with replicated sister chromatids coupled via kinetochores to the plus ends of opposing microtubules. However, kinetochores first bind the sides of microtubules and subsequently find plus ends through a trial-and-error process; accurate biorientation depends on the selective release of erroneous attachments. Proposed mechanisms for error-correction have focused mainly on plus-end attachments. Whether erroneous side attachments are distinguished from correct side attachments is unknown. Here, we show that side-attached kinetochores are very sensitive to microtubule polarity, gripping sixfold more strongly when pulled toward plus versus minus ends. This directionally asymmetric grip is conserved in human and yeast subcomplexes, and it correlates with changes in the axial arrangement of subcomplexes within the kinetochore, suggesting that internal architecture dictates attachment strength. We propose that the kinetochore's directional grip promotes accuracy during early mitosis by stabilizing correct attachments even before both sisters have found plus ends.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the cell biology of hippocampal neurons with dendritic axon origin. 揭示具有树突轴突起源的海马神经元的细胞生物学。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-04 DOI: 10.1083/jcb.202403141
Yuhao Han, Daniela Hacker, Bronte Catharina Donders, Christopher Parperis, Roland Thuenauer, Christophe Leterrier, Kay Grünewald, Marina Mikhaylova
{"title":"Unveiling the cell biology of hippocampal neurons with dendritic axon origin.","authors":"Yuhao Han, Daniela Hacker, Bronte Catharina Donders, Christopher Parperis, Roland Thuenauer, Christophe Leterrier, Kay Grünewald, Marina Mikhaylova","doi":"10.1083/jcb.202403141","DOIUrl":"10.1083/jcb.202403141","url":null,"abstract":"<p><p>In mammalian axon-carrying-dendrite (AcD) neurons, the axon emanates from a basal dendrite, instead of the soma, to create a privileged route for action potential generation at the axon initial segment (AIS). However, it is unclear how such unusual morphology is established and whether the structure and function of the AIS in AcD neurons are preserved. By using dissociated hippocampal cultures as a model, we show that the development of AcD morphology can occur prior to synaptogenesis and independently of the in vivo environment. A single precursor neurite first gives rise to the axon and then to the AcD. The AIS possesses a similar cytoskeletal architecture as the soma-derived AIS and similarly functions as a trafficking barrier to retain axon-specific molecular composition. However, it does not undergo homeostatic plasticity, contains lesser cisternal organelles, and receives fewer inhibitory inputs. Our findings reveal insights into AcD neuron biology and underscore AIS structural differences based on axon onset.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536041/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ca2+ tunneling architecture and function are important for secretion. Ca2+ 隧道结构和功能对分泌非常重要。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-05 DOI: 10.1083/jcb.202402107
Raphael J Courjaret, Larry E Wagner, Rahaf R Ammouri, David I Yule, Khaled Machaca
{"title":"Ca2+ tunneling architecture and function are important for secretion.","authors":"Raphael J Courjaret, Larry E Wagner, Rahaf R Ammouri, David I Yule, Khaled Machaca","doi":"10.1083/jcb.202402107","DOIUrl":"10.1083/jcb.202402107","url":null,"abstract":"<p><p>Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging. 多重 DNA-PAINT 成像显示晚期内膜体/溶酶体的异质性。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-01 DOI: 10.1083/jcb.202403116
Charles Bond, Siewert Hugelier, Jiazheng Xing, Elena M Sorokina, Melike Lakadamyali
{"title":"Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging.","authors":"Charles Bond, Siewert Hugelier, Jiazheng Xing, Elena M Sorokina, Melike Lakadamyali","doi":"10.1083/jcb.202403116","DOIUrl":"10.1083/jcb.202403116","url":null,"abstract":"<p><p>Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins; however, whether these proteins are uniformly present on each LEL, or if there are cell-type-dependent LEL subpopulations with unique protein compositions is unclear. We employed quantitative, multiplexed DNA-PAINT super-resolution imaging to examine the distribution of seven key LEL proteins (LAMP1, LAMP2, CD63, Cathepsin D, TMEM192, NPC1, and LAMTOR4). While LAMP1, LAMP2, and Cathepsin D were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type-specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. 突触后BMP信号调节果蝇幼虫肌肉的肌核特性。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-10-30 DOI: 10.1083/jcb.202404052
Victoria E von Saucken, Stefanie E Windner, Giovanna Armetta, Mary K Baylies
{"title":"Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles.","authors":"Victoria E von Saucken, Stefanie E Windner, Giovanna Armetta, Mary K Baylies","doi":"10.1083/jcb.202404052","DOIUrl":"10.1083/jcb.202404052","url":null,"abstract":"<p><p>The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Definition of phosphatidylinositol 4,5-bisphosphate distribution by freeze-fracture replica labeling. 通过冷冻断裂复制标记确定磷脂酰肌醇 4,5-二磷酸的分布。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2025-01-06 Epub Date: 2024-11-04 DOI: 10.1083/jcb.202311067
Takuma Tsuji, Junya Hasegawa, Takehiko Sasaki, Toyoshi Fujimoto
{"title":"Definition of phosphatidylinositol 4,5-bisphosphate distribution by freeze-fracture replica labeling.","authors":"Takuma Tsuji, Junya Hasegawa, Takehiko Sasaki, Toyoshi Fujimoto","doi":"10.1083/jcb.202311067","DOIUrl":"10.1083/jcb.202311067","url":null,"abstract":"<p><p>Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a phospholipid essential for plasma membrane functions, but its two-dimensional distribution is not clear. Here, we compared the result of sodium dodecyl sulfate-treated freeze-fracture replica labeling (SDS-FRL) of quick-frozen cells with the actual PtdIns(4,5)P2 content and the results obtained by fluorescence biosensor and by labeling of chemically-fixed membranes. In yeast, enrichment of PtdIns(4,5)P2 in the membrane compartment of Can1 (MCC)/eisosome, especially in the curved MCC/eisosome, was evident by SDS-FRL, but not by fluorescence biosensor, GFP-PLC1δ-PH. PtdIns(4,5)P2 remaining after acute ATP depletion and in the stationary phase, 30.0% and 56.6% of the control level, respectively, was not detectable by fluorescence biosensor, whereas the label intensity by SDS-FRL reflected the PtdIns(4,5)P2 amount. In PC12 cells, PtdIns(4,5)P2 was observed in a punctate pattern in the formaldehyde-fixed plasma membrane, whereas it was distributed randomly by SDS-FRL and showed clustering after formaldehyde fixation. The results indicate that the distribution of PtdIns(4,5)P2 can be defined most reliably by SDS-FRL of quick-frozen cells.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth. Dachsous和Fat协同抑制Dachs-Dlish-Approximated复合体,从而控制生长。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2024-12-02 Epub Date: 2024-10-07 DOI: 10.1083/jcb.202406119
Hitoshi Matakatsu, Richard G Fehon
{"title":"Dachsous and Fat coordinately repress the Dachs-Dlish-Approximated complex to control growth.","authors":"Hitoshi Matakatsu, Richard G Fehon","doi":"10.1083/jcb.202406119","DOIUrl":"10.1083/jcb.202406119","url":null,"abstract":"<p><p>Two protocadherins, Dachsous and Fat, regulate organ growth in Drosophila via the Hippo pathway. Dachsous and Fat bind heterotypically to regulate the abundance and subcellular localization of a \"core complex\" consisting of Dachs, Dlish, and Approximated. This complex localizes to the junctional cortex where it represses Warts. Dachsous is believed to promote growth by recruiting and stabilizing this complex, while Fat represses growth by promoting its degradation. Here, we examine the functional relationships between the intracellular domains of Dachsous and Fat and the core complex. While Dachsous promotes the accumulation of core complex proteins in puncta, it is not required for their assembly. Indeed, the core complex accumulates maximally in the absence of both Dachsous and Fat. Furthermore, Dachsous represses growth in the absence of Fat by removing the core complex from the junctional cortex. Fat similarly recruits core complex components but promotes their degradation. Our findings reveal that Dachsous and Fat coordinately constrain tissue growth by repressing the core complex.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local glycolysis supports injury-induced axonal regeneration. 局部糖酵解支持损伤诱导的轴突再生。
IF 7.4 1区 生物学
Journal of Cell Biology Pub Date : 2024-12-02 Epub Date: 2024-10-01 DOI: 10.1083/jcb.202402133
Luca Masin, Steven Bergmans, Annelies Van Dyck, Karl Farrow, Lies De Groef, Lieve Moons
{"title":"Local glycolysis supports injury-induced axonal regeneration.","authors":"Luca Masin, Steven Bergmans, Annelies Van Dyck, Karl Farrow, Lies De Groef, Lieve Moons","doi":"10.1083/jcb.202402133","DOIUrl":"10.1083/jcb.202402133","url":null,"abstract":"<p><p>Successful axonal regeneration following injury requires the effective allocation of energy. How axons withstand the initial disruption in mitochondrial energy production caused by the injury and subsequently initiate regrowth is poorly understood. Transcriptomic data showed increased expression of glycolytic genes after optic nerve crush in retinal ganglion cells with the co-deletion of Pten and Socs3. Using retinal cultures in a multicompartment microfluidic device, we observed increased regrowth and enhanced mitochondrial trafficking in the axons of Pten and Socs3 co-deleted neurons. While wild-type axons relied on mitochondrial metabolism, after injury, in the absence of Pten and Socs3, energy production was supported by local glycolysis. Specific inhibition of lactate production hindered injury survival and the initiation of regrowth while slowing down glycolysis upstream impaired regrowth initiation, axonal elongation, and energy production. Together, these observations reveal that glycolytic ATP, combined with sustained mitochondrial transport, is essential for injury-induced axonal regrowth, providing new insights into the metabolic underpinnings of axonal regeneration.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":null,"pages":null},"PeriodicalIF":7.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信